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1 Introduction

The climate is changing all over the world, and due to the inertia of the climate system, the rate
of change will be beyond the reach of any mitigation effort for the next few decades. Adaptation
to the changing climate is the remaining option. However, not all regions of the world are
affected to the same degree, and local assessments of changes are thus necessary to plan for
adaptation of infrastructure in order to maintain current safety standards. Projected changes
in temperature and precipitation make it plausible to assume an increase in the risk of extreme
flood events. Global projections of future climate at global and regional scales have, however,
large uncertainties, which must be assessed to provide a better informed basis for adaptation
decisions. This project aims to contribute such information.

1.1 Climate Change in Germany

Over the 20th century, temperature has increased at a higher rate in Germany than the global
mean, with largest increase in winter [Arbeitskreis KLIWA, Heft 5]. Connected to these temper-
ature trends are an increase of hot days (maximum temperature above 30◦C) and a reduction
of ice days (maximum temperature below 0◦C). Therefore, it is very likely that the potential
evapotranspiration will increase in summer. Furthermore, duration and thickness of snow cover
in winter are expected to decrease further. This can have an impact on the timing and amount
of runoff due to snowmelt.

It is expected that the above average warming in Germany will continue into the near future
with stronger increases in winter than in summer [Christensen et al., 2007]. Temperature is
projected to increase during the 21st century for all of Europe with higher rates than the global
mean temperature [Christensen et al., 2007]. The changes projected by different GCMs for
temperature are more homogeneous than for precipitation.

For precipitation, the past changes in Germany are difficult to assess. A large inter-annual
variability makes it difficult to extract statistically significant trends for mean precipitation. In
general, slight increasing trends are found in winter over large parts of Germany, wheras in sum-
mer the trends are more heterogeneous with mostly no change or a slight decrease [Arbeitskreis
KLIWA, Heft 5]. Trends for precipitation extremes are stronger, however the changes depend
on the season and region studied [Trömel and Schönwiese, 2007, Zolina et al., 2008, Arbeitskreis
KLIWA, Heft 8].

For the 21st century, mean precipitation is expected to increase in the north and decrease
in the south of Europe. This expectation is based on a climate projection from an ensemble
study with GCMs, carried out in connection to the AR4 IPCC-report [Christensen et al., 2007].
It was also shown that the ensemble not only produces such a pattern over Europe, but that
the individual members agree significantly on the sign of the changes in the north and south
respectively. The transition zone between increase and decreases, which includes central Europe
and Germany, shows only weak changes and the GCMs do not even agree on the sign of the
change.

Whereas mean precipitation shows only weak changes for central Europe, there are significant
changes to the distributions of precipitation intensities projected [Boberg et al., 2010]. These
changes are such that there is a decrease in the weaker intensities, and a corresponding increase
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1 Introduction

of the higher intensities. In other words, the precipitation events are becoming more intense.
Note that this intensification of precipitation has been found also for regions where precipitation
overall decreases [Christensen and Christensen, 2004, Frei et al., 2006]. RCM studies of Germany
have shown that the variability of precipitation is increasing for the next few decades, with larger
changes for more extreme events than for more moderate events [Schädler et al., 2010, Feldmann
et al., 2011].

1.2 Changes in Flood Discharges

Flood discharges are sensitive not only to changes in precipitation amounts and the distribution
over the year, but also to changes in precipitation intensities and the timing of snow melt. There
are several possible drivers for trends in flood frequency. Besides changes in climate, changes
in flood discharges may also be caused by land use and land cover shifts, river training works
or the construction of dams and reservoirs, and it is challenging to clearly attribute changes in
flood hazards to its drivers [Merz et al., 2012]. Longer records and inventories of historical flood
events show distinct phases of increased and reduced flood frequency (e.g. [Sturm et al., 2001]),
i.e. there is a clear natural variability in the flood records. Such natural variability can further
complicate the attribution of trends to the climate change phenomenon.

For the 20th century, studies of changes in flood discharges over Germany mostly showed
that there are only few gauges with significant trends in very long time series, however, more
significant increasing trends are found if the time period being studied is constricted to the last
40–50 years [Bormann et al., 2011, Villarini et al., 2011]. Using a common time period (1951–
2002) for catchments larger than 500 km2, the spatial characteristics of the trends have been
studied [Petrow and Merz, 2009]. Increases in the annual maximum flood trends were found for
a third of the gauges in western and southern Germany. In winter, increasing trends were found
in a diagonal band from northwest to the southeast of Germany, whereas in summer there were
decreasing trends for eastern Germany and increasing trends for southern Germany.

For the 21st century, studies using single model projections have shown heterogeneous results
for extreme flood events in Germany [Dankers and Feyen, 2008, Linde et al., 2010, Hurksman
et al., 2010, Menzel and Burger, 2002]. As these studies only made use of one or few projections,
and a different one in the different studies, the results from each single study might be over-
confident. Larger projects have investigated changes in the river discharges using multi-model
projections, including different GCMs, RCMs, HMs, and initializations [Kay et al., 2009, Vei-
jalainen et al., 2010, Graham et al., 2007, Wilby and Harris, 2006]. The general result from such
studies is that the GCM and natural variability have a large impact on the results, followed
by the RCM, HM and finally the emission scenario used, although the HM and RCM position
in the scale differs between studies. In general, and for Germany in particular, there is a lack
of such multi-model simulations of discharge assessments, however with this project and the
ongoing BfG (Federal Institute of Hydrology) project KLIWAS (http://www.kliwas.de/) this is
beginning to change.

1.3 Outline of the Project

Focusing on changes in flood discharge, this pilot study aims at promoting the use of ensembles
combining climate and hydrological models for scenario based projections, in order to assess the
involved uncertainties. The near future time period of study (2021–2050) was chosen such that
it conforms with that of the planning horizons of local water resource management systems, i.e.
at about 30–50 years. Three focus catchments of medium and small size were selected: Ammer,
Mulde and Ruhr. Such smaller catchments have faster response times to meteorological events,
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1.3 Outline of the Project

and thus put high demands on the meteorological input data. High resolution RCM simulations
were therefore carried out.

The ensemble, built with global climate models, regional climate models and hydrological
models, was constructed such that the main sources of uncertainty are sampled. From earlier
projects there are clear results that the emission scenario has a small impact on the results for
the near future. This is because the different scenarios of the IPCC start to differ significantly
only after about year 2050. Thus only the A1B scenario is used in this project. Physical models
of nature, such as GCMs, RCMs and HMs, are ultimately limited by our understanding of
the physical processes. Differences between similar models and the way they are handled, e.g.
GCMs, yield different descriptions of the world, and it is often not possible to determine which
one is more correct. The main idea behind model ensemble studies is that multiple models will
produce a distribution of plausible results, which encapsulates the real world result.

This report has the following structure: the focus catchments are described in chapter 2,
general information about the models used (GCMs, RCMs, HMs) are given in chapter 3, results
of the RCM and HM simulations are shown in chapter 4, and the report ends with discussion
and conclusions in chapter 5.
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2 Catchment Descriptions

Three catchment areas were studied in this project. They represent the different flood regimes
in Germany as described by Beurton and Thieken [2009]: dominant winter floods in the Ruhr
as typical for central and western Germany, winter but also spring and summer floods in the
Mulde as typical for north and east Germany, and summer floods in the Ammer as typical for
southern Germany. The Mulde and the Ruhr catchments are medium sized and include low
mountain ranges, whereas the Ammer is smaller with more alpine characteristics, see fig. 2.1.
Such catchments react faster to heavy precipitation than large catchments and thus present a
more immediate flood risk. The following sections describe each catchment in more detail.

Figure 2.1: Map of the topography of Germany, with the catchment locations marked as red
(Ruhr), blue (Mulde) and green (Ammer).

2.1 Ammer

The Ammer catchment is located around 50 km south-west of the Bavarian capital city Munich
and covers an area of 710 km2. It is part of the Danubian river system. The Ammer is the
most important tributary for the Lake Ammersee, which discharges into the Amper and finally
disembogues into the River Isar. An overview of the catchment and its subcatchment areas is
shown in fig. 2.2 (left).

The transition from an alpine to a prealpine landscape causes distinctive heterogeneity in
hydrological reactions results. The elevation of the outflow into Lake Ammersee is at 533 m
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2 Catchment Descriptions

altitude, the highest altitude within the catchment area is the Kreuzspitze at 2185 m asl. (see
fig. 2.2(right)). This elevation difference causes high spatial geological and pedological variability,
a complex terrain and also various climatological conditions [Marx et al., 2006].

The two main landscape units, the Swabian-Upper Bavarian foothills of the Alps and the
prealpine hilly countryside with moorland contain four geological units: the limestone-alpine
and the flysch zone in the southern part of the catchment area followed by molasses and unfolded
molasses in the northern part. The whole region is shaped by glacial deposition and selective
glacial erosion creating lake basins as side effect [Taschner, 2003].
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Figure 2.2: Subcatchments of the Ammer catchment with selected gauging stations (left) and
orography of the Ammer catchment (right).

The soil formation in the Ammer catchment started in the Late Glacial. Due to lack of
development time the present soils are in an initial stadium. The thickness of the soils is fur-
thermore determined by slope and erosive processes [Ludwig, 2000]. The major vegetation units
are grassland and woodland (mostly coniferous forest), with increasing percentage of forest in
the southern part of the drainage basin. Especially the prealpine area is characterized by agri-
cultural cultivation. The climate is cool-temperate and humid with a maximum of precipitation
in the summer months (about 65% of yearly rainfall). The average precipitation amount is
1300 mm per year, in the southern part up to 2000 mm can occur. On a monthly scale, maxi-
mum precipitation in the alpine region reaches values of more than 200 mm in July compared
to the prealpine zone with 150 mm in June [Kunstmann et al., 2004]. Snow cover occurs during
approximately 130 days per year. The average temperature varies between 7–8 ◦C but can drop
to 4.5 ◦C in the high mountain areas of the southern catchment. Due to the relief all climate
variables have altitude-dependent gradients.

The geological conditions of the Ammer catchment area cause a very heterogeneous flow
density. Accordingly the surface drainage of the gravel field in the northern part of the basin
is very low, in contrast it is comparatively high at the ground moraine overlayed molasses.
Further, it is assumed that in the southeast of the catchment, water drains subterraneously into
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2.1 Ammer

the adjacent drainage basin of the Loisach River [Kunstmann et al., 2006b].
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Figure 2.3: Mean monthly discharge (left) and mean maximum monthly discharge (right) for
gauging station Weilheim, time series 1971-2000.

The flow regime of the River Ammer is influenced by two factors: On the one hand by the
summer precipitation maximum and on the other hand by snow melt in spring. According to
this, maximum monthly discharge values occur in May in alpine subcatchments and in June and
July for the downstream subcatchments. Characteristic discharge curves (MQ and MHQ) for
the time period 1971-2000 at the gauge Weilheim are shown in fig. 2.3.

The Bavarian flood information agency (Hochwassernachrichtendienst HND) characterizes the
extent of inundation by four flood levels. They specify suitable water levels for every gauge which
can be converted to discharge volume. Level 1: Little overflowing. Level 2: Agricultural land and
forest areas are flooded or minor traffic obstruction on main and rural roads. Level 3: Several
built-up areas are flooded or blocking of supra-local transport links or sporadic activation of
dyke associations or rescue units is necessary. Level 4: Built-up areas are flooded to a greater
extent or activation of dyke associations or rescue units is required on a large scale (NaDiNe
2011)1.

In recent years the highest flood warning level four has been reached a few times in the
Ammer catchment. At the gauge Oberammergau with an average discharge of 3.72 m3/s, gauge
level four means a runoff of at least 167 m3/s. Maximum discharge values of 181 m3/s during
the flood in August 2005 and 168 m3/s in May 1999 were measured. The downstream gauge
Weilheim has an average discharge of 15.4 m3/s. The highest flood level implies a runoff of
334 m3/s. This level was recently exceeded in 1970 (38 m3/s), 1999 (650 m3/s) and in 2005
(550 m3/s). Table 2.1 shows the flood levels and historical flood events for three gauges in the
Ammer catchment area (source HND2).

1Natural Disasters Networking Platform, Gauge levels.
http://nadine.helmholtzeos.de/risks/flood/info/glossary/gauge levels en.html (08.07.2011)

2Hochwassernachrichtendienst HND: http://www.hnd.bayern.de/ (01.07.2011)
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2 Catchment Descriptions

[m3/s] Oberam- Peißen- Weil-
mergau berg heim

Average discharge 3.72 8.93 15.4
Level 1 38 105 146
Level 2 49 134 -
Level 3 - 167 212
Level 4 167 274 334

Historical flood events Date

Jun. 1959 126 Aug. 1970 286 May 1940 400
Jul. 1966 135 Jul. 1993 192 Jul. 1946 461
May 1999 168 May 1999 365 Aug. 1970 338
Aug. 2002 125 Aug. 2000 201 May 1999 649
Aug. 2005 181 Aug. 2005 314 Aug. 2005 549

Table 2.1: Flood level definitions and historical floods for the Ammer catchment.

2.2 Mulde

The Mulde River is located in Eastern Germany. It drains the northern part of the Ore Moun-
tains and is a tributary of the Elbe River. The catchment area up to the gauge Bad Dueben
is 6171 km2. The largest subbasins in the upper part are, from West to East, the Zwickauer
Mulde, the Zschopau and the Freiburger Mulde. After confluence of these rivers over a relatively
short river stretch they form the Vereinigte Mulde in the lower part of the catchment (fig. 2.4
left). The southern part of the catchment is mountainous and elevations reach up to 1244 m,
to the north elevations decrease (fig. 2.4 right). The land cover is 30% forest, 52% arable, 7%
grassland, and 9% residential. However, these are not equally distributed: forest areas are con-
centrated in the mountainous part of the catchment, and in the lowlands the dominant land use
is agriculture. Mean annual precipitation increases from values around 600 mm in the lowlands
to more than 1000 mm in the Ore mountains, where it increases from the eastern to the western
part. Resevoirs in the Mulde catchment (14 reservoirs above an ordinary storage of 1 million
m3 or a flood protection storage of 0.1 million m3, [LfULG, 2009]) are mainly used for drinking
water supply, but also serve for flood protection.

The monthly discharge regime is characterized by high flows in March/April caused by rain
and snowmelt, and minimum flows during the summer months (fig. 2.5). Monthly maximum
flows mostly show two peaks in spring and in summer. Floods in summer occur less often than in
spring but can be very severe. Petrow et al. [2007] assigned circulation patterns to all events of
the annual maximum series of 15 gauges in the Mulde catchment. They showed that the frequent
small flood events in winter are often caused by westerly cyclonic conditions. Several of the large
summer floods (e.g. 1954, 2002) are caused by a Vb circulation pattern. It is characterized by
a low pressure system moving from the Mediterranean Northeast towards Central and Eastern
Europe, and leads to intensive rainfall in the Northern part of the Alps and Central and Eastern
Europe.
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2.2 Mulde

Figure 2.4: Subcatchments of the Mulde catchment with selected gauging stations (left) and
orography of the Mulde catchment (right).
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Figure 2.5: Mean monthly discharge (left) and mean maximum monthly discharge (right) for
gauging station Bad Dueben, time series 1971-2000.

The most severe known flood in the Mulde catchment was the August 2002 flood. Total losses
in Germany caused by the 2002 flood were estimated to be 11.6 billion euro [Thieken et al.,
2006].Towns in the Mulde catchment which were very severly affected are for example Eilenburg
and Grimma, where the whole historic center was flooded. Return intervals up to 180 years
were assigned in the Zwickauer Mulde, and return intervals above 200 years and up to over 400
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2 Catchment Descriptions

years were attributed to most gauges in the Freiberger Mulde, Zschopau and Vereinigte Mulde
[LfULG, 2009]. The return periods were calculated based on summer and winter events and
time series including the 2002 event; if time series excluding the 2002 event are used, much more
extreme return intervals are estimated [LfULG, 2009, Schumann, 2005].

Petrow and Merz [2009] analyzed trends in flood frequency over all of Germany for the pe-
riod 1951–2002. While increasing trends were detected for the annual maximum flood for many
gauges clustered in southern and western Germany, hardly any trends were detected for north-
eastern Germany (Elbe and tributaries and Aller). Within the Mulde catchment this study
included eight gauges. None of these showed a trend for the annual maximum flood; at two
gauges an increasing trend in the winter maximum flood and at another two gauges a decreasing
trend in the summer maximum flood was observed. Petrow et al. [2007] additionally also per-
formed a regional trend analysis for 15 gauges in the Mulde catchment with normalized annual
maximum series, where data from 1936–2002 were included for 13 gauges and data from 1961–
2002 were included for another two gauges. This resulted in a slightly positive trend, if the 2002
event was included, and else a slightly negative trend. No trend was found using individual tests
for these 15 gauges.

2.3 Ruhr

The Ruhr is a right tributary of the Rhine located in North Rhine-Westphalia. The catchment
size is 4485 km2. The headwaters of the Ruhr are situated in the north-west range of the
Rothaargebirge in the Hochsauerland region. The maximum heights in the catchment are up to
850 m. The major sub-catchments are Möhne, Lenne and Volme. The Ruhr basin has a mainly
mountainous character and wide parts are covered by forest. Extensive urban areas are located
in the lower and outlet part of the catchment. To serve the varied needs in the Ruhr catchment
there is a complex water supply and management system with six larger reservoirs and water
export in operation [Brudy-Zippelius, 2003].

For the purposes of this project, three representative gauges in the Ruhr catchments were
chosen. The criteria for the selection of gauges were aspects of flood relevance, impact through
the water management system and the availability of data. The selected gauges are Bamenohl
at the upper Lenne above the large Bigge reservoir, Hagen-Hohenlimburg located at the Lenne
outlet, and Wetter at the lower Ruhr. There are further gauges, but most of them are not
capable of representing the natural hydrological processes in the catchment due to direct effects
of the diverse water resources management objectives. For calibration and validation of the
hydrological model the other gauges are used as well.

The monthly discharge regime at the Ruhr shows a typical (sub-)mountainous seasonal cycle.
High flows in December to March are caused by intensive rainfalls during the winter period (gen-
erally due to the frequent westerly cyclonic weather conditions). Snow, respectively snowmelt,
are not unusual for flood situations. During the summer months (May–October), distinct low
flow conditions dominate. In critical low flow situations (natural and/or through industrial
water export) at the lower Ruhr, an artificial water support by the water storage management
system in the catchment takes place.

In the last two decades some major flood events in the Ruhr catchment occurred [Höfer et al.,
2010]. The highest water levels were measured at the turn of the year 1993 to 1994, followed
by the flood event in October/November 1998. In August 2007, one of the rare summer floods
occurred. The water levels in August 2007 are partly the highest ever measured in the summer
half year in the Ruhr catchment. The flood damages at the Ruhr over the last 20 years have been
mostly manageable. The reason is that even the main floods have not significantly exceeded
the critical design values in the regions with high potentials of loss. In terms of annual return
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2.3 Ruhr

Figure 2.6: Subcatchments of the Ruhr catchment with selected gauging stations (top) and orog-
raphy of the Ruhr catchment (bottom).
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Figure 2.7: Mean monthly discharge (left) and mean maximum monthly discharge (right) for
gauging station Wetter, time series 1971-2000.

periods none of the major events in the last two decades exceeded HQ40, i.e. an event that
occurs on average every 40 years, at the main gauging station at Ruhr and Lenne.
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3 Models and Observations

3.1 Model Chain

The atmosphere is a chaotic dynamical system with interactions on all spatial (and temporal)
scales. To assess climate change for a smaller region, one therefore still has to start with the
global scale. Computational limitations make it unfeasible to perform high resolution climate
simulations for the whole Earth, so instead a method of nesting of regional models within global
models is commonly used to bridge the gap in resolution between the GCMs (typically 200 km)
and the HMs (here less than 10 km). There are multiple sources of uncertainties in any climate
change projection, and the chain of models needed to perform regional assessments introduces
further uncertainties.

Fig. 3.1 shows a schematic of the model chain used in this project. The base for any future
change assessment rests on an emission scenario. We are here using the so-called SRES scenarios
[Nakicenovic et al., 2000] made for IPCC, and since they are all similar in their emission pathways
for the next few decades, only one scenario is used. Other emission scenarios can be considered
to be small perturbations, and would thus only provide estimates of the natural variability in this
case. Two base simulation periods are used: the period 1971–2000 for the control simulation,
and 2021–2050 for the future A1B scenario.

Control (1971−2000) + Scenario A1B (2021−2050)

ECHAM5 CCCma3

Realizations

R1 R2 R3

WRF CLM

Bias correction

PRMS WaSiM SWIM

Ammer Ruhr Ammer Mulde Mulde Ruhr

Figure 3.1: Schematic of the model chain used in the project ”Flood Hazards in a Changing
Climate”

Two GCMs from the IPCC-AR4 ensemble of simulations are used for further downscaling.
One is the ECHAM5/MPI-OM [Röckner et al., 2003] model from MPI-M in Hamburg, and the
other the CCCma3 model [Scinocca et al., 2008] from Environment Canada. As was shown in
the regional climate change chapters of the IPPC-AR4 report [Christensen et al., 2007], there
is a large discrepancy in the climate change signal resulting from different GCMs for central
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Europe. It is therefore crucial to use multiple models for this kind of assessment. The GCMs
used are two of the globally better performing models of the IPCC-AR4 ensemble [Reichler
and Kim, 2008]. For the ECHAM5-MPI/OM model, a set of three different realizations, i.e.
simulations with different initial conditions and therefore different temporal evolution, was used.
These simulations encompass the natural variability of the atmosphere, which is a first step in
analyzing the significance of a climate change signal.

To downscale the GCM simulations to a horizontal resolution of about seven kilometers suit-
able for HMs, two different RCMs are used: CLM [Doms and Schättler, 2002] by IMK-TRO
and WRF [Skamarock et al., 2008] by IMK-IFU. Details on the models are given in Berg et al.
[2011b]. The reason for using more than one RCM is similar to the use of different GCMs; dif-
ferent parameterizations and physical schemes can provide different results, each being equally
plausible. The influence of the RCM is therefore assessed in this step.

Both GCMs and RCMs produce some kind of bias in their simulations, which can cause
problems when coupled to an HM [Wilby et al., 2000]. A bias correction methodology was
developed for the project and applied to each of the RCM simulations to alleviate some of these
problems. The methodology and its application is explained in Chapter 3.5.

The last step of the model chain are the HMs: WaSim from IMK-IFU, SWIM from GFZ, and
PRMS from IWG. The HMs are described in Chapter 3.3. The decision was taken that each of
the HMs should perform simulations for two catchments, so that each catchment is simulated
by two HMs. In total, an ensemble of 10 simulations is available for each catchment.

3.2 Atmospheric Models

An overview of the atmospheric models is given in Table 3.1. The base of the climate projections
are two GCMs, namely the CCCma3 and ECHAM5. These global numerical models include
representations of the physical processes of the atmosphere, cryosphere, oceans and land surface.
The model simulations follow a procedure of an initial spin-up of the full system over several
thousand years, until a quasi-stable equilibrium (there are always oscillations around the equilib-
rium state, i.e. natural variability) between the ocean and atmosphere is reached. At this time,
an emission scenario simulation (starting with the well known early industrial emissions of the
20th century) is introduced to the model. This will cause the model to leave its equilibrium and
follow the climate change scenario. Depending on the time the emission scenario is introduced
to the model, it will be in different natural variability states. This constitutes the difference
between the three so-called realizations of the ECHAM5 model simulations in this project. More
information on the GCMs can be found in Berg et al. [2011b] and references therein.

Model Short name Resolution Reference

ECHAM5-MPI/OM E5 T63/L32 Röckner et al. [2003]
CCCma3 C3 T47/L31 Scinocca et al. [2008]
COSMO-CLM CLM 50 km/7 km Doms and Schättler [2002]
WRF WRF 42 km/7 km Skamarock et al. [2008]

Table 3.1: Short information on the atmospheric models used in the project.

Due to high computational demands, the GCMs are using horizontal resolutions of several
hundred kilometers, which is too coarse for this project. A downscaling procedure using dynam-
ical RCMs is therefore applied. The RCMs are run offline within the boundary fields produced
by the GCM, a so-called one way nesting. To bridge the resolution gap of several hundred kilo-
meters without too large differences between the resolutions, a double nesting procedure is used:
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first, the RCM downscales the GCM data to the coarse nest resolution of around 50 km for all
of Europe, and in a second step, the RCM is nested withing the coarse nest and downscales the
model fields further to a 7 km resolution, see fig. 3.2. Detailed information on the RCMs (CLM
and WRF) can be found in Berg et al. [2011b] and references therein.

Figure 3.2: Map of the simulation domains indicating the first and second nests of CLM (green)
and WRF (orange). Originally in Berg et al. [2011b].

3.3 Hydrological Models

3.3.1 WaSiM-ETH

3.3.1.1 Model description

The water balance simulation model WaSiM-ETH [Schulla and Jasper, 2007] is a determin-
istic, fully distributed modular model for the simulation of the terrestrial water balance using
physically-based algorithms for the vertical fluxes. For instance, soil moisture in the unsaturated
zone is calculated with the Richards equation [Richards, 1931] and the potential evapotranspi-
ration according to Penman-Monteith [Monteith, 1975]. Actual evapotranspiration is estimated
using a relation between soil moisture and actual capillary pressure. Groundwater fluxes are
calculated by a two-dimensional flow model which is dynamically coupled to the unsaturated
zone. Other lateral fluxes like direct runoff and interflow are treated in a lumped manner. Sur-
face runoff is routed to the sub-catchment outlet using a subdivision of the catchment into flow
time zones. For considering retention, a single linear storage approach is applied to the surface
runoff in the last flow time zone. Translation and retention of interflow is treated accordingly.
Discharge routing in the river bed channel is based on a kinematic wave approach. The model
structure of WaSiM is shown in fig. 3.3. Primary WaSiM was developed for estimating the
impact of climate change to an alpine catchment [Schulla, 1997]. In recent years it was also
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successfully applied to flood forecast in small and medium sized catchments [e.g. Jasper et al.,
2002, Cullmann, 2006, Marx et al., 2006, Pakosch, 2011] and used world wide e.g. in the Middle
East or West Africa [Kunstmann et al., 2006a, Wagner et al., 2009].

Figure 3.3: Model structure of WaSiM-ETH. Originally in Schulla and Jasper [2007]

3.3.1.2 Data sources and preprocessing

WaSiM is applied for the Ammer and the Mulde catchments. To simulate the water balance and
runoff characteristics, WaSiM needs three input data grids describing the area. First, a digital
elevation model (DEM) which is available for both catchment areas in a resolution of 100 m.
For the Mulde drainage basin the elevation model was aggregated to a 400x400 m grid to reduce
computation time. Second, digital soil maps are required at the same resolution as the DEM.
Basis for the Mulde catchment is the general soil map of Germany (BUEK 1000), whose soil
types were accumulated to 17 representative soils. The soil distribution in the Ammer catchment
is based on the geological map of Bavaria (1:500000) [Marx et al., 2006] with resulting 5 soil
types. Third, a digital land use map is required mainly for the calculation of evapotranspiration
and interception. The land use map of the Mulde catchment results from the CORINE landcover
project which includes nine aggregated land use classes. The Ammer catchment is described by
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Catchment Type of data Description Sources

Ammer
Met. data

Hourly data of mean temperature,
DWDprecipitation, solar radiation, relative

humidity and wind velocity (2002–2009)

Met. data
Daily data of mean temperature,

PIK/DWDprecipitation, sunshine duration, relative
humidity and wind velocity (1971–2000)

Mulde Met. data
Daily data of mean temperature,

PIK/DWDprecipitation, sunshine duration, relative
humidity and wind velocity (1971–2000)

Ammer Discharge data Time series of hourly discharge WWA/HND
Mulde Discharge data Time series of daily mean discharge LfULG

Ammer Topography Combination of ERS satellite data,
RAPHAEL (2000)

and digital topographic map (1:50000)
Mulde Topography DEM Germany 25 m BKG

Ammer Land cover data Landsat-TM data RAPHAEL (2000)
Mulde Land cover data CORINE EEA

Ammer Soil data Geological map of Bavaria (1:500000) RAPHAEL (2000)

Mulde Soil data
BUEK 1000 (general soil map of

BGR
Germany, land use specific version

Table 3.2: Table of input data sources for the Ammer catchment. Institute abbreviations: DWD
- Deutscher Wetterdienst; DWD/PIK - Data prepared by PIK based on DWD sta-
tion data [Österle et al., 2006]; WWA - Wasserwirtschaftsamt Weilheim; HND -
Hochwassernachrichtendienst Bayern; LfULG - Sächsisches Landesamt für Umwelt,
Landwirtschaft und Geologie; BKG - Federal Agency for Cartography and Geodesy;
EEA - European Environment Agency; BGR - Federal Institute for Geosciences and
Natural Resources.

nine land cover types generated from Landsat-TM data [Marx et al., 2006].

All input data used for the simulations with WaSiM are shown in Table 3.2. To utilize the
information of the DEM, a topographical analysis is necessary. This is carried out using the
preprocessing tool TANALYS. It calculates slope, exposition, flow directions, flow accumulation
and the river network. In a second step, the catchment is divided into subcatchments.

3.3.1.3 Model calibration

For the Mulde basin, corrected measured meteorological data of the DWD were used to cal-
ibrate the model on a daily time step. Station data of precipitation [mm], air temperature
[◦C], global radiation [Wh/m2], relative humidity [-] and wind velocity [m/s] were used. The
catchment area with about 6200 km2 was divided into 11 subcatchments with sizes between
350 and 1000 km2, namely Niederschlema, Chemnitz, Wechselburg, Hopfgarten, Borstendorf,
Lichtenwalde, Niederstriegis, Nossen, Erlln, Golzern and Bad Düben. The calibration period
covers the years 1980–1995 with the first year for model initialization. Time series of daily mean
discharge data were provided for a total of 45 gauges by the Sächsisches Landesamt für Umwelt,
Landwirtschaft und Geologie. River flow was assumed to be natural and no water management
interventions were considered.

For the Ammer catchment, an hourly simulation time step performed better than a daily one
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due to the small catchment size and the alpine character. Meteorological data from DWD on an
hourly time step were only available for the years 2002–2009, which restricted the calibration to
this time period. Discharge data in hourly resolution were provided from the Wasserwirtschaft-
samt Weilheim (WWA) and the Hochwassernachrichtendienst Bayern (HND).

The Ammer catchment was divided into ten subcatchments whereof five are needed to regulate
the reaction of the lakes Staffelsee and Riegsee. For Lake Staffelsee additionally a reservoir with
abstraction rules was interposed. The calibrated and representative gauges are Oberammergau,
Unternogg, Peißenberg, Obernach and Weilheim with sizes between 40 and 180 km2. After the
successful calibration of the Ammer catchment for 2002–2009, the setup was transferred to the
control period from 1971–2000 using daily mean observed meteorological data. For the ensemble
analysis, the results of the regional climate models are then again processed on an hourly time
step.

3.3.2 SWIM

3.3.2.1 Model description

The model SWIM [Soil and Water Integrated Model; Krysanova et al., 1998] is a semi-distributed,
process based eco-hydrological model. The model also simulates plant growth, nitrogen and
phosphorus cycling and erosion, however the nutrient cycling and erosion modules were inacti-
vated in this study in order to reduce computation time. The spatial discretization of SWIM is
based on subcatchments, which are further subdivided into hydrologic response units (HRUs).
The HRUs are areas with the same soil type, land cover, and elevation zone and are assumed to
behave hydrologically similar. The model operates on a daily time step.

In the following a brief overview of the approaches for the representation of hydrologic pro-
cesses implemented in SWIM is given. For a more detailed model description the reader is
referred to Krysanova et al. [1998] and Krysanova et al. [2000]. State variables considered in
the hydrologic module describe storages for snow, interception, soil water (in different layers),
shallow and deep ground water, and water in the river. These stores are interconnected via
the following processes: Precipitation is considered as snow when the temperature falls below a
threshold temperature, and snowmelt is estimated using a modified degree-day method. Inter-
ception is simulated with a simple bucket approach. The sum of rainfall and snowmelt minus
interception and evapotranspiration is available for surface runoff and infiltration into the soil.
Surface runoff is estimated by a modified version of the Soil Conservation Service curve number
scheme, where the curve number is adjusted according to the soil moisture. Additionally surface
runoff occurs when the soil is saturated. Soil water above field capacity percolates to deeper soil
layers and to the groundwater depending on the hydraulic conductivity and available pore vol-
ume of the lower layer. If after percolation soil moisture still exceeds field capacity lateral flow
occurs. Potential evapotranspiration (PET) is calculated using the Priestley-Taylor method
[Priestley and Taylor, 1972]. For the estimation of the actual evapotranspiration (AET) the
method of Ritchie is adopted [Ritchie, 1972]. AET is estimated separately for soil evaporation
and plant transpiration, and depends on the soil moisture profile, leaf area index (LAI) and root-
ing depth. Groundwater is simulated in a conceptual way and represented by two linear stores
for shallow and a deep groundwater. Surface runoff, lateral subsurface flow and groundwater all
contribute to river runoff, which is finally routed between subcatchments using a Muskingum
approach.

3.3.2.2 Data sources and pre-processing

The data sources of input data needed for the SWIM model are summarized in Table 3.3. The
catchment was subdivided into subcatchments according to the location of gauging stations.
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Type of data Description Sources

Met. data
Daily data of maximum, minimum and mean

PIK/DWDtemperature, precipitation, shortwave
downward radiation and wind

Discharge data Time series of daily mean discharge LfULG

Topography
Within Germany: DEM Germany 25 m BKG

Outside Germany: SRTM DEM, 90 m NASA
Land cover data CORINE EEA

Soil data
BUEK 1000 (general soil map of

BGR
Germany, land use specific version

Water management
Daily data of reservoir inflow,

LTVreservoir outflow to river, drinking
water abstraction

Table 3.3: Table of input data sources for the Mulde catchment. Institute abbreviations: DWD
- Deutscher Wetterdienst; DWD/PIK - Data prepared by PIK based on DWD sta-
tion data [Österle et al., 2006]; LfULG - Sächsisches Landesamt für Umwelt, Land-
wirtschaft und Geologie; BKG - Federal Agency for Cartography and Geodesy; NASA
- U.S. National Aeronautics and Space Administration; EEA - European Environ-
ment Agency; BGR - Federal Institute for Geosciences and Natural Resources; LTV
- Landestalsperrenverwaltung Sachsen.

Where it was necessary, additional subcatchment outlets were introduced so that subcatchments
did not exceed 100 km2 as climate data are averaged over subcatchments, which resulted in
85 and 221 subcatchments for the Mulde and Ruhr catchments respectively. The land cover
classes from CORINE were aggregated to 9 classes (arable, grass, mixed forest, coniferous forest,
deciduous forest, wetland, water, bare soil, residential) and intersected with the soil map and a
map of 200 m elevation zones to delineate the HRUs.

Time series of meteorological data were interpolated onto a 1 km2 grid, and again aggre-
gated to subcatchment average mean values. For temperature universal kriging with elevation
was applied, precipitation, humidity and radiation were interpolated using the inverse distance
weighting method. Precipitation data were corrected for undercatch errors depending on wind
speed and the aggregation state of the precipitation [Yang and Ishida, 1999].

Data from the regional climate models provided at a 7 km resolution were first mapped
to a 1 km2 grid using the nearest neighbour method, and then summarised to subcatchment
average mean values. Temperatures were also adjusted for elevation differences between the
RCM elevation and the 1km grid using lapse rates calculated from the RCM temperature data
over the whole catchment area.

In the Mulde catchment daily data for water abstraction from reservoirs was available for
ten resevoirs above an ordinary storage of 1 Mm3 or a flood protection storage of 0.1 Mm3.
As most of the reservoirs are located in upstream catchments, large parts of the catchment are
influenced and the abstractions were taken into account during model calibration, where daily
abstraction values were subtracted from the calculated river flow. In the Ruhr catchment only
frequency distributions of daily abstractions for three locations (upstream of Villigst, upstream
of Hattingen and upstream of Muehlheim) were available. During model calibration a constant
mean abstraction according to these data was implemented in the model at these locations, but
abstractions were stopped if the discharge at that gauge was below the observed minimum flow
(period 1961–1990). However, as no scenarios for future abstractions were available and for
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better comparability to the other HMs, the results in chapter 4.2 all show simulations without
abstractions.

3.3.2.3 Model calibration

The SWIM model was calibrated using the SCE-UA algorithm [Duan et al., 1992, 1993, Duan,
1994] over a period of five years from 1991 to 1995, and 1990 was used for model initialization.
The calibration was performed individually for each subcatchment considering 28 subcatchments
for the Mulde and 15 subcatchments for the Ruhr. As objective function a weighted sum of Nash-
Sutcliffe efficiency, a modified efficiency giving higher weight to flood peaks, and volume bias
was applied. In the Mulde catchment further manual fine tuning took place after the automatic
calibration. The performance of the model was evaluated visually with respect to daily flows,
average and maximum monthly flow regimes, average and maximum annual discharges, and flow
exceedance curves.

3.3.3 PRMS

3.3.3.1 Model Description

The Precipitation Runoff Modeling System (PRMS) is an established hydrological watershed
and water balance model originally designed by Leavesley et al. [1983] at the United States
Geological Survey (USGS). The PRMS is a deterministic, conceptional distributed model with
a modular program design. The spatial discretization is implemented with subcatchments and
HRUs. PRMS describes the main components of the hydrological cycle with physical laws or
physical interpretable empirical relations. The dynamic variables of the hydrologic processes
are integrated in different storage modules [Leavesley and G., 1995]. The HRUs are distributed,
finite modeling entities and give a homogeneous runoff reaction to hydro-meteorological events.
HRUs may be spatially not continuous. Their assignment usually takes common climate, land-
use and underlying soil classification into account.

PRMS calculates the energy and water balance for each HRU on a daily time step. The
calculation is based on a hydrologic system with the vertical water flow from the atmospheric
input over the storage transformation due to vegetation, snow cover and the soil zone as well as
the components of runoff generation and evapotranspiration.

Based on meteorological input data PRMS simulates the hydrological system with its relevant
processes from the transforming storages of the vegetation canopy (interception, evaporation),
snow cover (snowmelt, evaporation) and soil zone (soil moisture, evapotranspiration) to the
discharge generating reservoirs for interflow and groundwater (see fig. 3.4).

In PRMS all components of the hydrologic system that are representing the vertical water
and energy flows (so called Soil-Vegetation-Atmosphere-Transfer) are simulated on the basis of
the spatially distributed HRUs. The parametrizations of the crucial algorithms can therefore be
calibrated for each HRU individually.

Interception by the plant canopy is computed as a function of plant-cover density and the
storage available on the predominant plant-cover type in each HRU accounting for the different
canopy density during summer or winter periods. PET is calculated using the Haude method
[Haude, 1958]. AET is estimated as a function of PET, including first interception-evaporation
and evaporation from a potential snow cover. Furthermore, the evapotranspiration from a
double layer soil zone as a function of available soil water and soil type is used to account
for water losses by plant activity (upper and lower soil zone) and by evaporation processes
from the upper soil zone. Surface runoff occurs due to infiltration excess. Infiltration into
soil proceeds by a contributing-area concept applying a non-linear function of the antecedent
soil moisture. Interflow (linear or non-linear) and groundwater (non-linear) are simulated as
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Figure 3.4: The hydrological PRMS model-scheme: as vertically cascading conceptual storages
for all relevant compartments and the linking hydrological processes [Leavesley et al.,
1983].

conceptual reservoirs linked with each other and with the soil zone, with storage capacities,
outflow rates and coefficients determining the dynamics of interflow and groundwater outflow.

To include the translation of the flow parts and the impact of the water resources manage-
ment systems (e.g. storage and export) in the Ruhr catchment the additional module BEWASYS
[Brudy-Zippelius, 2003] is applied. BEWASYS (BEwirtschaftung WAsserwirtschaftlicher SYS-
teme) is a modular water management model, that allows the balance quantification of natural
and artificial water bodies on a daily time step. For the translation the specific times are re-
ferred to the actual flow conditions in the HRUs. To handle non-linear correlations between
translation time and flow, a stepwise linearisation is adopted. The approximation of the trans-
lation time is based on an estimation of the mean time of the flow curve in the channel system
[Brudy-Zippelius, 2003].

3.3.3.2 Data sources and pre-processing

The spatial distribution of the Ruhr catchment for the hydrological modeling has to take into
account the available gauge stations in the Ruhr basin, the requirements of the HRUs, the
basis of any model calculation in PRMS, and a reasonable consideration of significant water
management impacts in the BEWASYS add-on. For these purposes the data sources listed in
Table 3.4 are used [Brudy-Zippelius, 2003]. The analysis of the Ruhr catchment on that data
basis results in a model division of 29 subcatchments and 51 HRUs.

3.3.3.3 Model calibration

The original calibration and validation of the hydrological model system with the water-balance
model PRMS and the water management model BEWASYS is performed on the basis of the
measurement data (meteorological, discharge, water management) for the hydrological years
1992–1995. Brudy-Zippelius [2003] used a split-sample-test approach. For the primary calibra-
tion, the time period 1992–1993 is used and the remaining years 1994–1995 serve as validation
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Catchment Type of data Description Sources

Ammer

Met. data
8-hourly data of temperature,

DWDprecipitation and relative
humidity (1990–2001)

Met. data
Daily data of mean temperature,

PIK/DWD
precipitation and relative

humidity (1971–2000)

Ruhr

Met. data
Daily mean and partial,
hourly/8-hourly data of DWD/

temperature, precipitation and Ruhrverband
relative humidity (1961–1996)

Met. data
Daily data of mean

PIK/DWDtemperature, precipitation and
relative humidity (1971–2000)

Ammer
Discharge data Time series of daily/partial hourly

WWA/HND
discharge data (1971–2000/1990–2001)

Ruhr
Discharge data Time series of daily/partial hourly Ruhrverband,

discharge data Staatliche Umweltämter
NRW

Ammer
Topography Combination of ERS satellite data,

RAPHAEL (2000)
and digital topographic map (1:50000)

Ruhr Topography DEM DGM50 Ruhrverband

Ammer Land cover data Landsat-TM data RAPHAEL (2000)
Ruhr Land cover data CORINE EEA

Ammer Soil data Geological map of Bavaria (1:500000) RAPHAEL (2000)

Ruhr Soil data
Geologic and pedologic Geologisches Landes-

maps of NRW amt NRW

Ruhr Water management Diverse records and reports Ruhrverband

Table 3.4: Table of input data sources for the Ruhr catchment. Institute abbreviations: DWD
- Deutscher Wetterdienst; DWD/PIK - Data prepared by PIK based on DWD sta-
tion data [Österle et al., 2006]; WWA - Wasserwirtschaftsamt Weilheim; HND -
Hochwassernachrichtendienst Bayern; EEA - European Environment Agency.

period. The performance analysis could be performed for up to 31 gauge stations, depending on
the available data.

3.4 Meteorological Data Sets

Station observations of temperature and precipitation are available for long time periods. How-
ever, the spatial and temporal coverage of stations are not always satisfactory. When validating
model simulations to observations, one has to deal with the problem of comparing spatial means
over a grid box, which is the model product, to that of point observations which comes from
the stations. A commonly used method is to perform gridding of the observational data to the
model grid. This can be carried out with various degrees of refinement, but is mainly performed
through interpolation. The resulting grid will be dependent on the station density and temporal
coverage, and the gridding procedure. In this section we describe and compare different gridded
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observational data sets used for the validation and bias correction of the RCM simulations.
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Figure 3.5: Annual mean spatial precipitation distributions (top three rows) for the REGNIE,
PIK/DWD and E-OBS data sets. The bottom row shows the annual cycle as monthly
means over the catchment areas.

Temperature fields are generally quite smooth, and are therefore less sensitive to the spatial
density of the station network. In this project we made use of the E-OBS [Haylock et al., 2008]
data set of daily gridded station data for Europe at 50 and 25 km resolution. For validation and
bias correction, the data set was first interpolated to the RCM 7 km resolution, and thereafter
corrected at each grid point with the standard lapse rate of the atmosphere (6.5 K/km) multiplied
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by the difference between the E-OBS and RCM orography. To validate the approach, the data
was compared to interpolated station data from GFZ, and only minor differences were found.

Precipitation is a much more heterogeneous variable than temperature, and is therefore much
more dependent on spatial coverage of the station data. Three precipitation data sets are
investigated here. The first is the REGNIE data set, which is a 1 km gridded product from
DWD, which was remapped to the RCM resolution. The second data set is the PIK/DWD
interpolated data (directly to the RCM resolution) based on a similar station data network as
the REGNIE data, however only using stations that cover the complete control period [Österle
et al., 2006]. The third data set is the E-OBS at 25 km interpolated to the RCM resolution. The
PIK/DWD and E-OBS data make use of the station data as they are, whereas the REGNIE
data set corrects for what is called undercatch. Undercatch is a phenomenon which relates to
a deficiency of the station gauges to collect all precipitation, especially under windy conditions
[Yang and Ishida, 1999]. The effect is largest when precipitation falls as snow.

Fig. 3.5 shows the mean annual precipitation for the control period at each of the three
catchments. There are some minor differences between spatial distribution of the REGNIE and
PIK/DWD data sets, but the main distribution is the same. The E-OBS data is much too
smooth and does not capture the regional details. The annual cycle, see fig. 3.5, shows that the
E-OBS produces lower precipitation amounts than the two others, and that REGNIE is slightly
wetter than PIK/DWD. The latter might be due to the effect of under-catch correction.

3.5 Bias Correction Method
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Figure 3.6: Transfer function of a precipitation distribution derived by plotting sorted model
data with reference data. A linear approximation to the transfer function is displayed
in blue.

HMs are known to be sensitive to bias in the meteorological forcing data [Wilby et al., 2000],
partly because they are calibrated with observational station data, and the RCM data must
therefore first be corrected for bias. A wet bias in annual precipitation could force the HM into a
constantly wet regime, which would have a large influence on the simulated flood characteristics.
The bias correction developed within this project takes into account the full distribution of
precipitation intensities and temperatures, which also leads to a correction of the mean values
[Berg et al., 2011a]. It is here referred to as ”histogram equalization” (HE). Other methods, such
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3.5 Bias Correction Method

as additive removal of the mean bias or scaling of the variable, can produce unwanted effects to
the tails of the distribution [Berg et al., 2011a]. Such effects are avoided with the HE approach
as it corrects all moments of the distribution.

The HE method can be conceptually explained using fig. 3.6. Given a model and a reference
data set of equal length, one can plot them together after sorting the data in increasing order.
The result is a perfect empirical transfer function with which one can transfer each single pre-
cipitation intensity to the appropriate intensity of the observational data, leading to a perfect
agreement between the two distributions. However, such a strict correction only works for data
sets of equal length, and for ranges of the distribution which have been observed, so to general-
ize the function we produce a linear fit to the curve. This was found to be sufficient for most
occasions [Berg et al., 2011a].

The Berg et al. [2011a] procedure was applied to the temperature and precipitation results
of the fine nest RCM data for each of the catchments using E-OBS data for temperature and
REGNIE data for precipitation (see section 3.4). The transfer functions were calculated on a
monthly basis.

29





4 Results

The focus of the project is on changes in discharge, the same focus is therefore also in this
chapter. However, to give an overview of the atmospheric driving data and changes thereof,
there is a short introductory section (4.1) on the GCM and RCM results at the European and
Germany wide scales. More in depth analysis of the atmospheric investigations can be found in
the two papers [Berg et al., 2011b] and [Wagner et al., 2011]. In section 4.1.5, the forcing data
that are used in the HMs are shown and validated to observational data. The HM results are
finally shown in section 4.2 for each catchment.

4.1 GCM and RCM Results

4.1.1 Control
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Figure 4.1: Annual cycles of temperature (top) and precipitation (bottom) from the second nest
simulations together with observational data for the region of Germany.

An evaluation of the chain of atmospheric models, from the GCM to the coarse nest RCM
and finally to the fine nest RCM simulations, was carried out for the variables temperature and
precipitation. There are significant biases present for all models of the ensemble, and the biases
are often transferred further down the model chain. The CLM simulations have a similar bias
as both of the GCMs, i.e. generally cold and wet for central Europe (see fig. 4.3 and fig. 4.4),
and thus enlarge the original bias. WRF on the other hand has a warm bias for central-eastern
Europe, and thus acts to reduce the original bias of temperature. The CCCma3 GCM has
a similar wet bias as the ECHAM5 simulations, but the cold bias is stronger and covers all
of Europe. As the RCMs were calibrated in reanalysis driven simulations, the cancellation or
amplification of the GCM bias by the RCM is coincidental.

The fine nest simulations follow the bias of the coarse nest simulations, but do not add any
significant additional bias. Fig. 4.1 shows the annual cycles of temperature and precipitation
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Figure 4.2: Normalised precipitation intensity distribution for the region of Germany of the fine
nest. The numbers in the figure legend indicate the dry day probability. Note that
only realization one of the ECHAM5 simulations with CLM are shown, for reasons
of clarity.

for the ensemble together with the observations. The WRF simulation performs very well for
temperature, whereas the CLM simulations with ECHAM5 are cold in winter, and the CCCma3
driven CLM simulation is cold by 2–5 K, with largest bias in winter. For precipitation, the CLM
simulations have a wet bias of 40–50 mm/month, whereas the WRF model performs slightly
better with 10–40 mm/month wet bias.

The distributions of precipitation intensities of the ensemble are shown in fig. 4.2. All RCM
simulations are underestimating the dry day probability, as indicated in the figure legend. A
dry day is here defined as a day with less than 1 mm of precipitation. This is due to the so-
called drizzle effect of many RCMs, and is particularly strong in the CLM simulations. The low
and moderate intensities are overestimated, but the higher intensities are well simulated by all
ECHAM5 driven simulations. The CCCma3 driven simulation has problems also for the higher
intensities.
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Figure 4.3: Difference maps of annual mean temperature in the control period for the GCM and
first nest simulations in comparison to the E-OBS data set. Originally presented in
Berg et al. [2011b].
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Figure 4.4: Relative difference maps of annual mean precipitation in the control period for the
GCM and first nest simulations in comparison to the E-OBS data set. Originally
presented in Berg et al. [2011b].

4.1.2 Future Scenario

All GCMs project a significant warming over Europe of about 1–3 K. On the seasonal scale,
an increase of mean temperature is present for all applied GCMs and RCMs (not shown). The
warming in northern and central Europe is likely to be largest in winter, which agrees with
previous results [Christensen et al., 2007]. The RCMs produce similar warmings, however with
slightly reduced magnitudes. The patterns and magnitudes vary only slightly between the
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ensemble members.
Changes in the seasonal cycle and annual mean temperature averaged over Germany are listed

in Table 4.1 for all applied GCM-RCM combinations in the fine nest resolution. Statistically
significant temperature changes at 95% confidence level (according to a Student’s t test, see
Wagner et al. [2011]) are indicated in bold. There is a projected warming for all simulations in
all seasons, and consequently also at the annual scale. All annual and most seasonal projected
temperature changes are statistically significant. The CCCma3 driven simulation shows a weaker
increase in winter, but otherwise similar results as the ECHAM5 driven simulations. The only
larger difference between the CLM and WRF simulations driven by the same GCM occurs in
summer. In contrast, the selection of the GCM and its initial condition (realization) results
in significantly larger differences of projected temperature change for both seasonal and annual
averages.

Temperature change [K] DJF MAM JJA SON ANNUAL

CLM-E5R1 1.4 0.2 1.1 1.5 1.0
WRF-E5R1 1.6 0.3 0.6 1.4 1.0
CLM-E5R2 1.9 1.0 0.7 1.5 1.3
CLM-E5R3 0.7 0.7 0.8 1.0 0.8
CLM-C3 1.0 0.9 1.2 1.3 1.1

Ens. mean 1.3 0.6 0.9 1.3 1.0
Ens. sd 0.5 0.3 0.3 0.2 0.2

Table 4.1: Projected fine nest seasonal and annual mean temperature changes [K] averaged over
Germany between 1971 to 2000 and 2021 to 2050 for the CLM (CLM-E5R1-3 and
CLM-C3), and WRF (WRF-E5R1) simulations, plus the ensemble mean and standard
deviation. Numbers in bold are statistical significant at the 95% confidence level.

The south-north contrast in precipitation changes across Europe, which is described in Chris-
tensen et al. [2007], is also indicated by the GCMs applied in this ensemble. The projected
changes of the three realizations of ECHAM5 differ in their magnitude, but the overall pat-
tern is the same, see fig. 4.5(left column). For Germany, the different realizations of ECHAM5
produce varying magnitudes of precipitation increase. To assess the projected changes of precip-
itation in comparison to the natural variability, the change patterns are compared to differences
between different realizations, see fig. 4.5. A pattern with similar magnitudes like the projected
dipole can be found when studying the differences of e.g. realization three and two for the control
period. This means that the projected pattern could arise by chance from natural variability.
However, the consistency of the pattern for different GCMs of this and earlier projects indicates
that the pattern is significant.

The CLM downscaling of ECHAM5 indicates a similar pattern of changes in annual precipi-
tation, whereas WRF downscaling tends to a slightly positive annual precipitation change. The
climate change signal of the CCCma3 GCM is in the same range as that of ECHAM5 realization
three, but the CLM downscaling intensifies the climate change signals compared to the CCCma3
GCM. On the seasonal scale, precipitation change patterns for the applied GCMs for winter and
autumn are similar to the annual one (not shown). But for spring positive precipitation change
signals are also projected for central and eastern Europe except for ECHAM5 realization three.
In summer, the projected precipitation decrease signal is more extended in space and magni-
tude compared to the annual one, except for the WRF simulation which produces an increase
in mean precipitation from the north-east of the domain into central Europe. Note, however,
that the precipitation is simulated differently by the different models as it is a sum of multiple
processes within each single model. Differences in the end result can therefore differ between a
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Figure 4.5: Climate change signal in precipitation (relative changes) for the different realizations
of the ECHAM5 GCM simulations (left column). The differences between the differ-
ent realizations for the control (middle column) and future scenario (right column)
periods show that the differences are of some ± 10–20 %.

GCM and an RCM due to the parameterizations used, and is not necessarily a result of reso-
lution. The CLM and ECHAM5 uses a more similar parameterization of precipitation, i.e. the
Tiedtke scheme [Tiedtke, 1989], and have similar results, whereas the WRF simulation uses the
Kain-Fritsch scheme [Kain, 2004], which might explain the different result for summer.

Overall, the GCM and coarse nest RCM analysis shows that the impact of different GCMs
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on the simulation results is in the same order of magnitude as the applied initial conditions
(realizations) of the GCM. Furthermore, the impact of the RCM on the climate change signal is
more dominant for precipitation as compared to temperature, which causes more heterogeneous
patterns of the precipitation signal on both seasonal and annual scales, see fig. 4.6.
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Figure 4.6: Projected annual relative precipitation changes over Germany for the RCM ensemble.
Contours delineate regions with statistically significant changes at the 95% level.

Projected changes on seasonal and annual scales averaged over Germany are listed in Ta-
ble 4.2. The values are highly variable over both season and model. There are a few significant
changes for some models in some seasons, but an overall analysis shows that there are no statis-
tically significant changes in mean precipitation for Germany. Comparing the CLM and WRF
simulations driven by the same GCM, it is clear that also the RCMs respond differently to the
same driving data.

Fig. 4.7 shows the projected changes of the probability density function (PDF) of wet day
precipitation intensities, defined as days with at least 0.1 mm of precipitation. Generally, the
models show a shift of the PDF toward more extreme values at the cost of the weaker intensities.
Similar changes have been shown also for other models in larger ensemble assessments [Boberg
et al., 2010]. The intensity distributions of the CLM and WRF models are comparable indicating
a decrease of lower precipitation intensities and an increase for higher intensities. The change
point is approximately at 6 mm/day. WRF produces slightly higher decreases of lower intensities
and higher probabilities in particular for moderate intensities in the range of 10 and 20 mm/day
compared to the CLM driven ECHAM5 realization one simulation. Different realizations of the
GCM also impact the precipitation PDFs. When the CCCma3 GCM is used as driving model,
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Precipitation change [%] DJF MAM JJA SON ANNUAL

CLM-E5R1 1.3 5.0 -7.9 9.3 1.9
WRF-E5R1 0.4 15.9 6.9 12.9 8.8
CLM-E5R2 12.3 12.8 -0.6 1.8 6.6
CLM-E5R3 9.6 -0.7 -5.0 6.0 2.5
CLM-C3 -3.7 6.8 -8.9 -1.6 -1.9

Ens. mean 4.0 8.0 -3.2 5.7 3.6
Ens. sd 6.7 6.6 6.2 5.7 4.2

Table 4.2: Projected fine nest seasonal and annual mean precipitation changes [%] averaged over
Germany between 1971 to 2000 and 2021 to 2050 for the CLM (CLM-E5R1-3 and
CLM-C3), and WRF (WRF-E5R1) simulations, plus the ensemble mean and standard
deviation. Numbers in bold are statistical significant at the 95% confidence level.

the projected precipitation PDF differs significantly from the ECHAM5 simulations, however
the general trend of a decrease of lower intensities and an increase of higher intensities is also
present, but first the magnitude of the projected change is less, and second the change point is
shifted to approximately 11 mm/day. The differences in the CCCma3 driven simulation could
be due to the bias in the precipitation intensity distribution as presented in fig. 4.7. The shift of
the change point is an interesting result in comparison to Boberg et al. [2010], where the change
point was found to be remarkably similar between different GCM and RCM combinations.

The analysis of this ensemble in simulating present climate [Berg et al., 2011b] and projected
climate changes for Germany [Wagner et al., 2011] have shown the benefit but also remaining
uncertainties of the high resolution regional simulations. This means that subsequent climate
impact studies, e.g. for the assessment of changes in flood hazard, have to be aware of and cope
with these uncertainties. Hence, ensemble approaches are required to include the variations of
the projected climate change signals in impact studies.
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Figure 4.7: Projected change of precipitation PDFs over Germany between 1971 to 2000 and
2021 to 2050 for the (CLM-E5R1-3 and CLM-C3) and WRF (WRF-E5R1) simula-
tions.
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4.1.3 Impact of Bias Correction

The most important task of the bias correction is to correct the mean values of temperature and
precipitation. However, a more advanced bias correction was applied to the RCM simulations
of this project in order to ensure a good distribution of precipitation intensities. The applied
method, presented in section 3.5, was investigated in detail in Berg et al. [2011a]. They used a
similar observational data set, but applied the correction for an area covering entire Germany
and its near surroundings. It was further shown that the HE method performs well in correcting
the precipitation distribution, including the dry days. The drizzle effect in the RCM simulations,
especially strong in the CLM model, could be corrected well by removing the lowest precipitation
intensities. Whether the ”correct” events were removed was investigated through the distribution
of consecutive dry day periods, see Berg et al. [2011a]. This distribution is close to that of the
observations, indicating that drizzle events that shortened the periods for the original simulation
were removed correctly. The mean characteristics were corrected almost perfectly, including also
the spatial distributions. It was further shown that there is no significant impact of the bias
correction on the mean climate change values, but that there are changes in the shift of the
precipitation intensity distribution, as shown in fig. 4.8.
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Figure 4.8: Spatially averaged wet day precipitation distributions for the observations (solid
black), the original model data (solid red), as well as for the HE method (solid blue),
and two other simpler methods (dashed green and dot-dashed brown). Results are
presented for the control period (top) and as differences between the future scenario
and the control period (bottom). Note the change in the horizontal and vertical
scales for the two panels.
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4.1.4 Ensemble Analysis

The result for each ensemble member for the changes in mean values of temperature (in degrees)
and precipitation (in percent) for entire Germany is shown for each season in fig. 4.9. Confidence
intervals were estimated using a bootstrap approach, and are indicated for the 90% level in the
figure. There is a clear increase in temperature in all simulations, however the magnitude
of the increase varies with the GCM, RCM and season. The precipitation changes are more
heterogeneous. Below, the variations in the climate change signals are discussed according to
three sources of uncertainty: (i) natural variability, (ii) GCM and (iii) RCM.

The natural variability is here assessed through the three realizations of the ECHAM5 GCM
downscaled by the CLM RCM. These are indicated with dark green, blue and light green colours
and numbers one to three in fig. 4.9. The largest spread between the simulations is in the winter
months (DJF) where the temperature change ranges from about 0.6–1.9 K, and precipitation
changes by about 2–12% increase. The spread is lowest in summer, with temperature changes
from 0.7–1 K and precipitation changes from 2–8% decrease.
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Figure 4.9: Seasonal changes in precipitation (vertical axis, shown in percent) and tempera-
ture (horizontal axis, in degrees) for the individual ensemble members. Error bars
marking the 90% confidence interval were calculated with a bootstrap approach.

The GCM uncertainty is not well sampled, as only two different GCMs were downscaled, but
can be cautiously inferred from the ECHAM5 simulations and the CCCma3 simulation with the
CLM (the latter indicated with a purple ”C” in the figure). The CCCma3 climate change signal
tends to lie inside the temperature range given by the three realizations of the ECHAM5 model,
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with an exception for summer where it indicates a higher temperature increase of about 1.2 K.
For precipitation, the CCCma3 simulation tends to lie outside the range given by the ECHAM5
simulations, with a decrease in precipitation for all seasons except spring where it agrees with
the increase projected by the ECHAM5 simulations.

The RCM uncertainty is shown through the use of the CLM and WRF, both driven by
realization one of the ECHAM5 (indicated in the figure by dark green and orange ”1”s for
CLM and WRF respectively). The trends of the changes in both temperature and precipitation
are in the same direction for all months but summer, however with different magnitudes. In
summer, the changes in precipitation differ strongly between the two RCMs, with WRF showing
an increase of about 7% and CLM a decrease of similar magnitude. This deviation between
the RCMs can be traced to differences in the first nest (about 50 km for CLM and 42 km
for WRF) of the downscaling procedure, where the WRF model responds differently to the
GCM driving data with an increase of precipitation over central to north-eastern Europe (not
shown). This deviation of the WRF model from the precipitation simulations of CLM and the
driving ECHAM5 model might be due to the convection scheme, which is practically the same
for CLM and ECHAM5, while WRF uses a different one, as discussed in Chapter 3.2. The
parameterizations of convective precipitation differ between the two RCMs, and this might be
the reason for the deviation in the precipitation changes. In Berg et al. [2011] and Wagner et
al. [2011], the REMO RCM, forced by the first two realizations of the ECHAM5 model was
compared to the CEDIM-ensemble simulations. The spread in the temperature and precipitation
changes are similar to that just described when including also this model, however with a larger
spread in winter where the REMO simulations show a decrease in precipitation (not shown).

The overall uncertainty from the three sources investigated here indicates possible larger un-
certainties from the driving GCM compared to the natural variability, and clear deviations
between the RCMs which could be related to specific parameterizations. Temperature shows
consistent increases for all simulations and all seasons, but the uncertainties are larger for pre-
cipitation and no general conclusions of the change in the mean precipitation is possible from
this analysis. Note that the signal would be much clearer if the CCCma3 downscaling simula-
tions would not be part of the ensemble, which shows the importance of including several GCM
models in any assessment of this kind.

4.1.5 Meteorological Forcing Data

The topic of the last section was the general characterization of the RCM results for present
and future climate. This chapter is meant to be a bridge between the analysis of the HM
results in the following part and the previous discussion. The HMs require precipitation, two
meter temperature, two meter relative humidity (all HMs), downward short wave radiation at
the surface (WaSiM and SWIM) and ten meter wind speed (WaSiM) as meteorological input
data. The input data from RCMs and from observations will be discussed and compared for each
catchment in the following sections. An analysis of climate change signals at the catchment scale
will be shown in order to show the propagation of the change signals through the model chain.
Note that it is the bias corrected values of precipitation and temperature that are presented
for the RCMs in this section, as these are the ones used as input to the HMs. Precipitation is
the main driver of flood discharges for the catchments studied, and therefore a more detailed
investigation of the mean monthly precipitation sums are presented, which can be compared to
the MQ results of the HMs.
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4.1.5.1 Ammer

The base analysis and calibration for the Ammer catchment is carried out with the PIK/DWD
station data at a daily time step. However, the small area and fast hydrological response of the
Ammer catchment makes a daily time step of the HM almost too coarse. Therefore, the WaSiM
model uses an hourly time step and thus requires the additional DWD data set of hourly data.

Precipitation Temperature ∆Precipitation ∆Temperature
[mm/month] [◦C] [%] [◦C]

Ann. WH SH Ann. WH SH Ann. WH SH Ann. WH SH

DWD/PIK 104 77 132 7 1 13 NA NA NA NA NA NA
REGNIE 120 91 149 NA NA NA NA NA NA NA NA NA

WRF-E5R1 121 89 153 6 0 11 7.3 6.3 8.3 0.8 0.9 0.8
CLM-E5R1 119 90 148 7 1 12 1.6 6.8 -3.7 1.1 1 1.1
CLM-E5R2 125 95 154 6 1 12 0.7 11.7 -10.4 1.4 1.5 1.2
CLM-E5R3 122 95 150 7 1 12 -2.6 -3.4 -1.7 0.9 1 0.9
CLM-C3 122 93 152 7 1 12 1.7 8.3 -4.9 1.3 1.1 1.5

Ens. 122 92 151 7 1 12 1.7 5.9 -2.5 1.1 1.1 1.1

Table 4.3: Annual (Ann.), winter half year (WH) and summer half year (SH) area means of
precipitation and temperature in the Ammer catchment, as well as future changes of
the variables.

Table 4.3 shows the observational data of the main influencing meteorological variables, to-
gether with the RCM simulated data. The DWD/PIK station data within the catchment shows
smaller precipitation sums than the gridded REGNIE data, which was used for the bias cor-
rection. This means that even after bias correction, the RCM simulations are overestimating
precipitation throughout the year in comparison to the station data. The climate change sig-
nals are highly variable, as seen in the country wide analysis, but with a general consistency of
increases in winter and decreases in summer. These change signals were also projected within
previous investigations [Smiatek et al., 2009]. Temperature is close to that observed, and in-
creases by about 1 ◦C evenly over the year.

RH SW radiation ∆RH ∆SW radiation
[%] [J/cm2] [%] [%]

Ann. WH SH Ann. WH SH Ann. WH SH Ann. WH SH

DWD/PIK 80 82 78 1104 710 1498 NA NA NA NA NA NA

WRF-E5R1 69 75 63 1253 776 1730 -0.2 -1.1 0.7 -2.3 -3 -1.6
CLM-E5R1 83 84 83 893 647 1140 -0.5 0 -0.9 -2 -5 1
CLM-E5R2 84 84 83 889 633 1145 -0.4 -0.3 -0.6 -1.8 -3.8 0.3
CLM-E5R3 83 84 83 895 626 1164 0 -0.2 0.1 -0.9 -0.3 -1.4
CLM-C3 84 85 84 870 647 1093 -0.4 -0.4 -0.5 -0.6 -2.4 1.1

Ens. 81 82 79 960 666 1254 -0.3 -0.4 -0.2 -1.5 -2.9 -0.1

Table 4.4: Annual (Ann.), winter half year (WH) and summer half year (SH) area means of SW
radiation and relative humidity in the Ammer catchment, as well as future changes
of the variables.

Of secondary influence to HMs are relative humidity and short wave radiation, which are
presented in Table 4.4. WRF is underestimating relative humidity throughout the year, while
overestimating short wave radiation. By contrast, CLM is overestimating relative humidity (and
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4.1 GCM and RCM Results

basically lacks an annual cycle), while underestimating shortwave radiation. The CLM result
could be related to a problem with too much cloud cover in the model. A slight decrease is
projected for both variables, which is fairly consistent among the different ensemble members.
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Figure 4.10: Mean monthly precipitation sums in the Ammer catchment for the bias corrected
model data in comparison to the REGNIE observations (left), and relative differ-
ences between the future and control time periods (right). Shaded areas indicates
the enemble spread by one standard deviation.

The annual precipitation in the Ammer catchment is the highest of all selected catchments
(up to 200 mm/month, fig. 4.10(left)). The maximum monthly precipitation sums occur during
July–August, and the minimum precipitation during January–February. In principle, the RCMs
are able to reproduce this annual cycle, although they tend to produce the highest precipitation
amount about one month to early, and show a large over prediction in winter (not shown). After
bias correction, the annual cycle is well described, and the spread between individual simulations
is fairly low.

The relative change between the future and control time periods (fig. 4.10(right)) shows large
inter-member variability, but tends to increases in precipitation in spring, and decreases in late
summer and autumn. The changes can however not be considered statistically significant.

4.1.5.2 Mulde

The larger Mulde catchment shows a slower reaction to precipitation events than the Ammer
catchment, and is therefore simulated with a daily time step. There is one major difference
between the SWIM and WaSiM forcing data for Mulde, and that is that the SWIM model is
calibrated and validated with undercatch corrected precipitation data. Undercatch is a failure
of the precipitation gauges to capture all precipitation when there are e.g. strong winds over the
gauge. The undercatch can be estimated for a specific gauge when wind and temperature are
known. This was performed with the DWD/PIK data on the input fields for the SWIM model,
and showed about a 10% increase in precipitation amounts for winter (where snow worsens the
undercatch) and about 7% in summer.

There are similar differences between the REGNIE and DWD/PIK station data for Mulde as
for Ammer, i.e. higher precipitation sums for the former, see Table 4.5. The RCMs perform
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Precipitation Temperature ∆Precipitation ∆Temperature
[mm/month] [◦C] [%] [◦C]

Ann. WH SH Ann. WH SH Ann. WH SH Ann. WH SH

DWD/PIK 59 52 66 8 3 14 NA NA NA NA NA NA
REGNIE 62 55 69 NA NA NA NA NA NA NA NA NA

WRF-E5R1 63 55 71 8 2 14 10.1 8 12.1 0.9 1.1 0.6
CLM-E5R1 64 55 73 8 3 14 2.5 8.8 -3.9 1.2 1.1 1.2
CLM-E5R2 63 55 71 8 2 14 7.5 14.6 0.4 1.5 1.8 1.2
CLM-E5R3 64 57 71 8 3 14 0.6 -0.3 1.5 0.9 0.9 0.8
CLM-C3 63 55 72 8 3 14 -2.5 -0.5 -4.5 1.3 1.1 1.5

Ens. 64 55 72 8 3 14 3.6 6.1 1.1 1.2 1.2 1.1

Table 4.5: Annual (Ann.), winter half year (WH) and summer half year (SH) area means of
precipitation and temperature in the Mulde catchment, as well as future changes of
the variables.

well for temperature and precipitation after the bias correction. Temperature is projected to
increase by about 1 ◦C, and precipitation shows tendencies to increase, although the single
members diverge throughout the year.

WRF is underestimating relative humidity in summer, but is close to observations in win-
ter, see Table 4.6. It is overestimating shortwave radiation similarly to the Ammer catchment.
CLM also behaves the same as it did for the Ammer catchment, with overestimations of rela-
tive humidity, and underestimations of shortwave radiation. The climate change signals show
practically no change for relative humidity, but a few percent decrease of shortwave radiation.

The Mulde catchment is the driest of the analyzed catchments. The annual cycle of monthly
precipitation (fig. 4.11(left)) is less pronounced than for the Ammer with a secondary maximum
in winter. The summer maximum derived from the observations is about 85 mm/month in
July. The RCM simulations overpredict the uncorrected precipitation throughout the year, but
the shape of the annual cycle is well represented in the ensemble mean (not shown). This holds
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Figure 4.11: Mean monthly precipitation sums in the Mulde catchment for the bias corrected
model data in comparison to the REGNIE observations (left), and relative differ-
ences between the future and control time periods (right). Shaded areas indicates
the ensemble spread by one standard deviation.
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RH SW radiation ∆RH ∆SW radiation
[%] [J/cm2] [%] [%]

Ann. WH SH Ann. WH SH Ann. WH SH Ann. WH SH

DWD/PIK 78 82 75 998 568 1427 NA NA NA NA NA NA

WRF-E5R1 73 82 64 1069 614 1525 0 -1 1 -3.4 -4.9 -1.9
CLM-E5R1 87 88 86 788 541 1034 -0.2 0.2 -0.6 -3.4 -7.8 1
CLM-E5R2 87 88 86 807 539 1076 0.3 0.3 0.3 -5.4 -7.4 -3.4
CLM-E5R3 87 88 86 796 524 1068 0 0.1 -0.2 -2.4 -3.1 -1.8
CLM-C3 87 88 86 801 565 1038 0.1 0.3 0 -2.2 -4.4 0

Ens. 84 87 82 852 557 1148 0 0 0.1 -3.4 -5.5 -1.2

Table 4.6: Annual (Ann.), winter half year (WH) and summer half year (SH) area means of SW
radiation and relative humidity in the Mulde catchment, as well as future changes of
the variables.

especially for the CLM ECHAM5 simulations. WRF shows a maximum in June and CLM driven
by CCCma3 a maximum in August. The spread of the ensemble is smaller than for the Ammer.
The bias corrected RCM data stay close to observations.

For the projection period, there is a tendency for a flatter annual cycle. A decrease can
be found just in July–August, otherwise the tendency is toward an increase (fig. 4.11(right)).
Among the ensemble members WRF predicts an increase most of the year. CLM driven by
CCCma3 mostly a neutral to slightly negative change.

4.1.5.3 Ruhr

As for the Mulde, the Ruhr catchment is simulated using a daily time step for both the PRMS
and SWIM models. The SWIM model once again uses undercatch corrected data, with similar
consequences as described in the previous section.

Precipitation Temperature ∆Precipitation ∆Temperature
[mm/month] [◦C] [%] [◦C]

Ann. WH SH Ann. WH SH Ann. WH SH Ann. WH SH

DWD/PIK 90 94 86 9 4 14 NA NA NA NA NA NA
REGNIE 91 95 86 NA NA NA NA NA NA NA NA NA

WRF-E5R1 96 103 89 8 3 13 10.5 10.6 10.3 0.8 1 0.7
CLM-E5R1 93 97 89 8 3 13 4 11.5 -3.5 1.1 1 1.2
CLM-E5R2 92 97 87 8 3 13 7.3 16.3 -1.7 1.3 1.6 1.1
CLM-E5R3 93 98 87 9 3 14 2.8 5.6 0 0.9 1 0.8
CLM-C3 93 98 87 8 3 13 0.1 0.2 0 1.3 1.1 1.4

Ens. 93 99 88 8 3 13 4.9 8.8 1 1.1 1.1 1

Table 4.7: Annual (Ann.), winter half year (WH) and summer half year (SH) area means of
precipitation and temperature in the Ruhr catchment, as well as future changes of
the variables.

Contrary to in previous catchments, the REGNIE and DWD/PIK data in the Ruhr catch-
ment are very close to each other, which could make the validation and control simulations
more similar, see Table 4.7. The CLM simulations agree well with the observations after bias
correction. The WRF, however, produces a larger overestimation in winter, which seems to be
due to the bias correction using a two month running window to calculate the corrections. This
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Figure 4.12: Mean monthly precipitation sums in the Ruhr catchment for the bias corrected
model data in comparison to the REGNIE observations (left), and relative differ-
ences between the future and control time periods (right). Shaded areas indicates
the enemble spread by one standard deviation.

causes a low bias in October and January, to reduce the amount of correction for November
and December. The climate change signals show a fairly consistent increase in precipitation for
winter, but more mixed signals in summer. Temperature is increasing by about 1 ◦C.

RH SW radiation ∆RH ∆SW radiation
[%] [J/cm2] [%] [%]

Ann. WH SH Ann. WH SH Ann. WH SH Ann. WH SH

DWD/PIK 79 82 77 961 554 1368 NA NA NA NA NA NA

WRF-E5R1 78 85 71 974 542 1406 0.2 -0.5 0.8 -4.3 -5.9 -2.7
CLM-E5R1 90 91 89 711 473 949 -0.2 0.4 -0.9 -2.8 -8.8 3.2
CLM-E5R2 89 91 88 743 473 1013 0.6 0.7 0.5 -7.3 -9.2 -5.4
CLM-E5R3 89 91 88 727 464 990 0.1 0.3 -0.2 -1.5 -3.1 0
CLM-C3 89 91 88 737 490 985 0.3 0.4 0.2 -3.1 -5.1 -1

Ens. 87 89 85 778 488 1068 0.2 0.3 0.1 -3.8 -6.4 -1.2

Table 4.8: Annual (Ann.), winter half year (WH) and summer half year (SH) area means of SW
radiation and relative humidity in the Ruhr catchment, as well as future changes of
the variables.

Relative humidity is underestimated by WRF and overestimated by CLM, like for the other
catchments, see Table 4.8. Short wave radiation is however fairly close to observations for
the WRF model in the Ruhr catchment, while CLM is underestimating it, like for the other
catchments. There are practically no projected changes to relative humidity, while short wave
radiation is decreasing by a few percent.

The annual cycle of precipitation for the Ruhr catchment (fig. 4.12 left) is weaker than for the
other catchments and has a maximum in winter of about 116 mm/month in the observation and
a weak secondary June–July maximum (93 mm/month). The simulations are able to reproduce
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4.2 Hydrological Model Results

the shape of the annual cycle but the uncorrected data give too high annual sums in all seasons
(not shown). After bias correction, only the WRF model is deviating from the observations, as
discussed at the beginning of this section.

Compared to the present day climate, the annual cycle for the future period (fig. 4.12 right)
is enhanced in the simulations with a strengthened winter maximum and basically no more
secondary summer maximum. The ensemble spread is even smaller than within the control
period, especially in summer. The ensemble mean changes are as high as or even higher than
the standard deviation during the winter month, due to the small spread. The precipitation
increase is up to 20% in March. A decrease in precipitation occurs in July (10%) and August
(7%).

4.2 Hydrological Model Results

In the following sections, the results of the hydrological modeling will be discussed. First, the
quality of the calibration of each hydrological model will be assessed by means of performance
criteria. The most commonly applied method is the Nash-Sutcliffe efficiency (E) [Nash and
Sutcliffe, 1970]. Its values range from -∞ to 1, where 1 means a perfect fit of observed and
simulated data and 0 means that the simulations are as accurate as the mean of the observations.
It is defined as:

Ef = 1−
∑T

t=1

(
Qt

o −Qt
m

)2∑T
t=1

(
Qt

o −Qo

)2 (4.1)

where Qo is observed discharge, Qm is modeled discharge and t is time. Due to the squared
discharge values, this criterion focuses on peak flows.

To have an even stronger focus of model calibration on high flows, a modified Nash-Sutcliffe
coefficient (fEff) is used:

fEf = 1−
1
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1
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)
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)2 (4.2)

To validate the simulated lower flows, the logarithmic Nash-Sutcliffe (lnEf ) criteria is calcu-
lated. The volume error, also called Bias (b), compares the simulated sum of discharge with the
sum of the observed discharge to calculate whether the entire quantity of runoff is well simulated.

b =

∑
Qt

m∑
Qt

o

(4.3)

These performance criteria are calculated for the calibration period, which can be different
between the hydrological models and the catchments, and for the validation period as well as
for the whole simulated time series.

To represent the results of the hydrological simulations, mean monthly discharge data (MQ)
and mean monthly maximum discharge data (MHQ) are shown. To avoid the effects of single
outliers, mostly averaged values will be analyzed. In addition, return periods of the annual,
winter and summertime maximum floods are shown for observed and simulated discharge out-
put. This is performed with the plotting position method, showing which flood event has the
corresponding exceedance probability in years. The plotting positions were defined by first ex-
tracting the annual (winter, summer) maxima and sorting from the lowest value with m = 1, to
the highest value with m = n = 30. The return periods are assigned to these values according
to
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RP =
1

1− m
n+1

. (4.4)

Note that the return values are calculated for the 1971–2000 (or 2021–2050) time period for
both model and observational data. They will therefore differ from return values calculated from
the complete observational record which is commonly used.

4.2.1 Ammer

4.2.1.1 Calibration and validation

Henceforth, a maximum number of three gauges will be considered for the analysis of the Ammer
catchment. The gauge Oberammergau represents the most alpine head basin of the catchment
area. Weilheim describes the downstream outlet of the Ammer catchment. As third gauge,
Peißenberg is chosen, because it represents the transition from an alpine to a more mountainous
landscape.

In a preprocessing step, both HMs use interpolation functions to generate gridded meteoro-
logical input fields from observation data. The spatial coverage of the station data within the
Ammer catchment is very sparse, especially at the southern alpine part. Recently, a collabora-
tive project of FZ Juelich, KIT, UFZ Leipzig-Halle, DLR, Helmholtz Centre Munich and GFZ,
called TERENO was started, with the Ammer catchment being one of four hydrological sites.
Within this project, three long term hydrological and meteorological observatories are installed,
which will considerably improve the future database [Zacharias et al., 2011]. The calibration
with WaSiM for the Ammer catchment, which was performed on an hourly time step for the
years 2003–2006, results in satisfying model efficiencies (see Table 4.9). The second hydrological
model PRMS used the time period 1991–1996 as calibration period, and a daily time step. The
performance criteria are quite good. Overall, the performance criteria indicate a more flood
event based calibration of WaSiM with higher values at the modified efficiency and otherwise
a more water balance based approach of PRMS with e.g. a better lnEf and less volume bias.
One reason may be the different modeling time steps. Most calibration difficulties are found at
the small alpine head basin of the catchment (Oberammergau), but downstream the quality of
simulations increases clearly with both WaSiM and PRMS.

Nov Jan Mar May Jul Sep

0
5

1
0

1
5

2
0

2
5

M
Q

 (
m

3
/s

)

Observation

WASIM SimObs

Nov Jan Mar May Jul Sep

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

M
H

Q
 (

m
3

/s
)

Figure 4.13: MQ and MHQ of the WaSiM validation simulation and observations at hourly time
step for the period 2003–2009 at gauge Weilheim. The dashed lines indicate the
half-year mean values (colours as in legend).
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The MQ at Weilheim for the period of 2003–2009 is characterized by two peak flows, one in
spring (April) and one during summer time (August). The annual cycle is well simulated with
a small overestimation during winter. Also the mean monthly maximum discharge (MHQ) can
be reproduced with WaSiM (see fig. 4.13).

For the common validation period (1971–2000) both hydrological models (WaSiM and PRMS)
use a daily time step and for the meteorological observed input the DWD/PIK-Data due to
missing hourly data for this period. Noticeable is that the seasonal cycle at the Ammer gauges
is different for that period compared to the WaSiM calibration period. The observed discharge
data have now a unimodal instead of a bimodal annual regime. The highest measured discharge
takes place in July at the gauge Weilheim. Consequently, flow is higher in summer than in
winter in the validation period.

In fig. 4.14, MQ and MHQ are shown exemplary for the gauge Weilheim. The characteristics
of the annual regime of MQ of both HMs agree fairly well with the observed data. However,
both models calculate the highest mean monthly flow ahead of time in April. For MHQ one can
see that WaSiM overestimates the high flows strongly in the simulation with a daily time step.
PRMS, in contrast, simulates the maximum flows well.

Ef fEf lnEf b [%]

all cal val all cal val all cal val all cal val

Oberam- WaSiM 0.54 0.63 0.14 0.95 0.81 1.00 0.33 0.41 -4.86 16 14 155
mergau PRMS 0.47 0.45 0.48 0.73 0.61 0.73 0.24 0.24 0.24 -11 -12 -11

Peißen- WaSiM 0.75 0.77 0.73 0.98 0.98 0.90 0.51 0.53 0.48 0 -2 2
berg PRMS 0.53 0.78 0.50 0.83 0.90 0.83 0.37 0.74 0.36 0 -1 2

Weilheim
WaSiM 0.84 0.87 0.72 0.95 0.95 0.90 0.66 0.71 0.55 3 -2 11
PRMS 0.70 0.78 0.68 0.78 0.90 0.71 0.72 0.74 0.78 2 -1 3

Table 4.9: Performance criteria for the three selected gauges (Oberammergau, Peißenberg and
Weilheim) and the two hydrological models (WaSiM and PRMS), calculated for the
complete period 1971-2000 (’all’), and separately for the calibration (’cal’) and val-
idation (’val’) periods. Note that WaSiM was calibrated with hourly data for the
period 2003–2006.
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Figure 4.14: MQ and MHQ of the validation simulations at daily time step at gauge Weilheim.

Fig. 4.15 shows the return periods of annual, winter and summer maximum flows from observed
(Obs) and simulated discharge (SimObs). The summer floods dominate the characteristics of
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the yearly events. The highest discharges during winter are much smaller than in summer.
The figure also shows again the overestimation of high flows by the daily based driven WaSiM
simulation. PRMS shows a good agreement of simulated and observed data. Although, for
shorter return periods over the whole year and for longer return periods in winter there are
underestimations. The characteristics of floods in summertime are very well reflected by PRMS.

The severe overestimation of high flows by WaSiM is resolved by simulating the RCM data
input in an hourly time step again (like the original calibration from 2003–2006).
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Figure 4.15: Return periods of the validation simulations at gauge Weilheim.
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4.2.1.2 Control period
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Figure 4.16: MQ of the control simulations at gauge Weilheim. Dark shaded areas indicate the
maximum ensemble spread of the HM simulation shown in the plot, and the light
shaded areas the other HM.

For the climate change simulations, the hydrological models are driven by RCM simulated
meteorological data. Due to the small size and the heterogeneous topography of the Ammer
catchment, the hydrological models react sensitively to the different spatial meteorological input
data. For the simulations, the hourly time step was applied again for WaSiM driven by RCMs.

Fig. 4.16 shows the range of simulated MQ resulting from the RCM ensemble for both hy-
drological models, exemplary at the gauge Weilheim. The simulated regime from November
until March is close to the SimObs runoff data, but from April to October the results differ
considerably. The ensemble minimum is given by the simulations with WRF, the high flows
result from the CLM runs. All simulations have a unimodal regime with the peak in May. Both
HMs (PRMS and WaSiM) show comparable results, except for the WRF driven simulations.
A sensitivity study (see fig. 4.19) has shown strong impact of relative humidity of the RCMs.
PRMS shows comparable tendencies, but doesn’t seem to react as strongly to the input param-
eter of humidity as WaSiM does. Remarkable are the large differences between the CLM and
WRF driven simulations in spring and summer.

The MHQs, shown in fig. 4.17, are overestimated in summer by both HMs, with higher values
of the WaSiM simulations. However, WaSiM achieves even higher values than PRMS. The WRF
driven WaSiM simulation underestimates MHQ throughout the year. In contrast, the PRMS
simulation with WRF performs well in winter, but overestimates the high flows in summer. The
MHQ values of the simulations driven by CLM are overestimated by both HMs. Therefore the
range of the ensemble is different between the two HMs. While the simulations with PRMS
result in a homogeneous and small spread between the individual RCM members, WaSiM gets
a spread up to 50 m3/s in summer.

The annual 30-year return periods in fig. 4.18 conform to the higher flood events during
summer time. Furthermore, the distinct underestimation of discharge by the WRF model and
the overestimation of CLM are again apparent. This induces a stretching of the ensemble range,
which is more pronounced for WaSiM.

To detect the cause of the large difference of the CLM and WRF based simulations in the
Ammer catchment with WaSiM-ETH, as indicated in figs. 4.16 and 4.17, a simple sensitivity test
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Figure 4.17: MHQ of the control simulations at gauge Weilheim. Dark shaded areas indicate the
maximum ensemble spread of the HM simulation shown in the plot, and the light
shaded areas the other HM.
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Figure 4.18: Return periods of the control simulations at gauge Weilheim. Dark shaded areas
indicate the maximum ensemble spread of the HM simulation shown in the plot,
and the light shaded areas the other HM.
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was carried out (similar test were carried out for the Ruhr catchment with PRMS with the same
results). It showed that the relative humidity (RH) has a large impact on the results. Fig. 4.19
illustrates the results for the sensitivity test with exchanged inputs of relative humidity for CLM
(green) and WRF (orange). In this study, the large differences up to 15 m3/s during summer
and autumn in the simulations of the Ammer catchment with WaSiM-ETH can be explained.

Figure 4.19: Sensitivity test of the influence of relative humidity (RH) to the discharge simula-
tions with WaSiM in the Ammer catchment using CLM and WRF input for the
control period.
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Figure 4.20: Change in MQ between the scenario and control periods at gauge Weilheim. Shaded
areas indicate one standard deviation of the ensemble.

The comparison between the control and the future scenario shows tendencies of increasing mean
monthly discharge in winter and decreasing discharge during summer (see fig. 4.20). WaSiM
shows a clearer trend in winter than in summer, whereas PRMS predicts the decrease in summer
more clearly. The spread of the single ensemble members, here indicated by one standard
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deviation, is for both hydrological models very large so that an unambiguous statement about
a future change in discharge is difficult to make.

It is conspicuous that the WRF-PRMS simulation reacts in the opposite way. The cause for
this exceptional reaction in PRMS is not conclusively explained. At this point the WaSiM results
are more plausible because they reflect the change in WRF-precipitation input with increasing
values all over the year except in December, January and June.

To detect a trend for the MHQ is even more difficult (see fig. 4.22), as the differences of the
ensemble members are larger than for MQ. The single ensemble members show in most cases
the same discharge tendencies as for the mean monthly discharge.

Changes in return periods, determined by the annual, winter and summer maximum discharge
values, show a clearer trend for winter than for summer (see fig. 4.21). Especially for return
periods of 5 years and more, both hydrological models predict an increase in winter. For summer,
a decreasing tendency is plausible, but the large spread of the single ensemble members makes
the changes non-significant. The mean ensemble change covers a range from about -10 to +5%
relative change for the future.
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Figure 4.21: Changes in return periods between the scenario and control periods at gauge Weil-
heim. Shaded areas indicate the min-max range of the ensemble.

54



4.2 Hydrological Model Results

Nov Jan Mar May Jul Sep

−
4

0
−

2
0

0
2

0
4

0

WASIM

R
e

l.
 C

h
a

n
g

e
 (

%
)

WeilheimMHQ

Ensemble Mean

WE5R1

CE5R1

CE5R2

CE5R3

CC3

Standard Deviation

Nov Jan Mar May Jul Sep

PRMS
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4.2.2 Mulde

4.2.2.1 Calibration and validation

Before using an HM for climate change impact assessment studies, it is necessary to evaluate how
the model performs for present conditions. If the HM cannot reproduce the water balance under
current conditions, we will trust less in its ability for estimating changes for a future climate,
and characteristics of the differences between simulated and observed discharge data have to be
taken into account for the interpretation of the results under future climate projections.

The results are shown exemplarily for three selected gauges (for the location of the gauges see
fig. 2.4): Bad Düben (6171 km2) represents the overall catchment, as it is the last gauge with
a sufficiently long measured time series before confluence into the Elbe River, Erlln represents
a catchment in the middle reaches with a catchment area of 2983 km2 and Hopfgarten finally
represents a smaller catchment (529 km2) centered in the Ore Mountains. All three gauges have
a continuous measured time series of discharge during the period 1971–2000, which has been
selected as control period in this study.

Ef fEf lnEf b [%]

all cal val all cal val all cal val all cal val

Hopf- WaSiM 0.64 0.63 0.69 0.85 0.86 0.91 -0.08 -0.22 0.08 -11 -12 -10
garten SWIM 0.72 0.73 0.72 0.86 0.85 0.86 0.62 0.65 0.62 -3 2 -4

Erlln
WaSiM 0.78 0.76 0.86 0.85 0.81 0.90 0.23 0.11 0.38 -17 -19 -15
SWIM 0.79 0.76 0.80 0.89 0.85 0.89 0.68 0.68 0.69 -4 4 -6

Bad WaSiM 0.78 0.79 0.82 0.80 0.86 0.94 0.27 0.15 0.41 -11 -12 -10
Düben SWIM 0.79 0.77 0.79 0.85 0.90 0.85 0.74 0.70 0.74 4 7 4

Table 4.10: Performance criteria for the three selected gauges (Hopfgarten, Erlln and Bad
Düben) and the two hydrological models (WaSiM and SWIM), calculated for the
complete period 1971-2000 (’all’), and separately for the calibration (’cal’) and val-
idation (’val’) periods.
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Figure 4.23: MQ and MHQ of the validation simulations at gauge Bad Düben. The dashed lines
indicate the half-year mean values (colours as in legend).

Table 4.10 shows the calculated performance criteria for the WaSiM and SWIM HMs. The
calibration period for SWIM was 1991–1995, with 1971–1994 and 1996–2000 together used as
validation period, whereas the calibration period for WaSiM was 1980–1995, with 1971–1979
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4.2 Hydrological Model Results

and 1996–2000 together used as validation period. With respect to Ef and fEf values, both
models show a good and comparable performance. None of the two models shows a decline
in the model performance when moving from the calibration to the validation period. The log
efficiency values are lower for WaSiM than for SWIM. As this project concentrates on flood
events, the performance with respect to log efficiency values, which characterize the low flow
prediction ability, is of minor importance, but it indicates structural problems of the model
during low flow conditions. The difficulties of WaSiM during low flow are due to a general
underestimation of discharge by approximately 10%, shown by the bias values in the last three
columns of Table 4.10. Visual comparisons of simulated and observed daily flows (not shown)
supported this, with generally good and comparable performance of the two models.

The results for MQ (fig. 4.23 left) show that the seasonal cycle is generally well represented
by both models. While WaSiM underestimates throughout the year, as has also been senn for
the volume errors, SWIM overestimates the seasonality, and tends to overestimate in winter and
underestimate in summer. Fig. 4.23 (right) shows MHQ, which is also well simulated by both
models.
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Figure 4.24: Return periods of the validation simulations at gauge Bad Düben.
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As for flood frequency analyses usually only the annual maxima or the maxima for the winter
and summer half years are extracted, it is important to assess, how well these values can be
reproduced. Fig. 4.24 shows empirical flood frequency curves for the annual (top), winter (mid-
dle) and summer maxima (bottom). As most annual maximum floods occur in winter, the plots
for the annual and winter maxima are very similar, while discharges of the summer maxima are
lower. The distribution of simulated maximum winter, summer and annual discharges agrees
very well to the observed discharges for both models, except for the one largest value caused by
the flood in winter 1974/75. There is a slightly better agreement with discharges simulated by
SWIM, particularly in summer WaSiM underestimates flows at higher and overestimates flows
at lower return periods.

4.2.2.2 Control period

After demonstrating that both models can reproduce the observed runoff using observed me-
teorological input, the next step is to evaluate how the models perform with RCM output for
the control period used as climate input. Fig. 4.25 shows very noticeable differences between
simulated monthly mean discharge with climate input from observations (red line) on the one
hand and with climate input from the RCMs from the control period (coloured lines) on the
other hand. The climate input from WRF generally results in an underestimation of discharge,
while the climate input from CLM mostly results in an overestimation. This overestimation is
most pronounced in the summer months from May to October and stronger for the simulations
with WaSiM than for the simulations with SWIM.
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Figure 4.25: MQ of the control simulations at gauge Bad Düben. The dotted red line in the
SWIM plot (left) indicates the SimObs curve when no undercatch correction was
performed for the calibration data. Dark shaded areas indicate the maximum en-
semble spread of the HM simulation shown in the plot, and the light shaded areas
the other HM.

The picture is very similar for MHQ (Fig. 4.26). Again we can generally see an underestimation
by the simulations with WRF climate input, although there is naturally more scatter for monthly
maximum than for monthly mean flows. Average monthly maximum flows are overestimated
during the summer months and this overestimation is again stronger for the simulations with
WaSiM as compared to the simulations with SWIM.

The next figure (fig. 4.27) shows plotting positions of annual, winter and summer maximum
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Figure 4.26: MHQ of the control simulations at gauge Bad Düben. The dotted red line in
the SWIM plot (left) indicates the SimObs curve when no undercatch correction
was performed for the calibration data. Dark shaded areas indicate the maximum
ensemble spread of the HM simulation shown in the plot, and the light shaded areas
the other HM.

flows simulated with SWIM (left) and WaSiM (right). The values for the summer maximum
flows show a larger spread, but the ensemble envelope is consistent with the results for the
MQ and MHQ results: an underestimation of the simulations with ECHAM5-WRF climate
input and an overestimation of the simulations with CLM climate input, particularly for the
WaSiM simulations. For return periods above 5 years the overestimation is lower (WaSiM) or
disappears (SWIM). In winter, the range of the different ensemble members is much smaller
and the simulations with RCM climate input are much closer to the simulations with observed
climate input.

There are several reasons for these deviations between the simulations with observed climate
input and climate input from the RCMs. First, WaSiM has been calibrated with observed
precipitation without undercatch correction. Since the bias correction was performed with the
non-undercatch corrected data, the underestimation of discharge by WaSiM in summer is most
likely due to the underestimation of humidity by WRF in summer. WRF underestimates the
humidity in summer by about 15% (see Table 4.6). Second, SWIM has been calibrated with
observed precipitation with undercatch correction, so that the bias corrected climate input is
generally lower than the precipitation during the calibration period. The effect of the undercatch
correction on the simulated discharge is demonstrated in fig. 4.25, which also contains a SWIM
simulation with observed climate input without undercatch correction (dotted red line). This
simulation is very close to the simulation with climate input from WRF. However, there is no
stronger underestimation of discharge of the simulation with WRF climate input in summer.
This is probably due to a lower sensitivity of SWIM than WaSiM to changes in humidity.

The overestimation of discharge of the simulations with CLM climate input can be attributed
to the overestimation of humidity and underestimation of radiation by CLM. CLM overesti-
mates humidity by about 15% in summer and 7% in winter, and it underestimates radiation by
about 25% in summer and 5% in winter. The overestimation of discharge shows up stronger
in the simulations with WaSiM. In the simulations with SWIM, the factors resulting in a lower
discharge (lower precipitation input) and higher discharge (higher humidity and lower radiation)
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partly compensate and thus lead to more moderate discharge overestimations using the SWIM
than the WaSiM model. A stronger overestimation of discharge by the simulations with CLM
climate input during the summer than the winter months is due to (i) a stronger effect of evapo-
transpiration (which is reduced by the lower radiation and higher humidity) during the summer
months, while evapotranspiration is generally only low during the winter months, and (ii) the
stronger deviations of the CLM humidity and radiation during the summer than the winter
months. The larger range between the different ensemble members for summer than for winter
maximum flows might be due to a larger proportion of convective events in summer; convection
processes cannot be resolved at a resolution of 7 km, so that the spread of the ensemble might
be due to differences in the convection parameterizations between the RCMs.
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Figure 4.27: Return periods of the control simulations at gauge Bad Düben. Dark shaded areas
indicate the maximum ensemble spread of the HM simulation shown in the plot,
and the light shaded areas the other HM.

4.2.2.3 Future period

In accordance with the changes for the catchment average precipitation (see Table 4.6), changes
in the simulated discharge between the control and scenario period look very heterogeneous for
the different ensemble members (fig. 4.28 and fig. 4.29), and there is no overall trend towards
increasing or decreasing discharges. The high relative changes of the simulations driven by WRF
in particular in summer and autumn are mainly due to the already described underestimation
in the control period. For the same ensemble members, the changes are very similar between
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the different gauges (not shown) and between the two different hydrological models generally
reflecting the precipitation changes. For example, the simulation with ECHAM5-WRF climate
input shows an increase in discharge in nearly all months, which is consistent with the change
in precipitation for this ensemble member (+11% in winter and +10% in summer). Differences
between SWIM and WaSiM in the absolute values of the changes can be explained by the
sometimes different base value, e.g. the values of the discharge increases of ECHAM5-WRF
in October are larger for WaSiM than for SWIM, which is due to the fact that the average
monthly flow in October simulated with ECHAM5-WRF input for the control period is lower
for the simulation with WaSiM than with SWIM. Particularly for the average monthly maximum
flows the range of the changes is larger in summer than in winter. This is probably related to a
larger variability in summer precipitation.
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Figure 4.28: Change in MQ between the scenario and control periods at gauge Bad Düben.
Shaded areas indicate one standard deviation of the ensemble.
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Figure 4.29: Change in MHQ between the scenario and control periods at gauge Bad Düben.
Shaded areas indicate one standard deviation of the ensemble.

Looking at changes in return periods (fig. 4.30), again the much larger variability in the
summer half year as compared to the winter half year is noticeable. Over all return periods
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some ensemble members simulate an increase and others a decrease in the discharge values and
the ensemble mean is close to the line of zero change. Only for return periods above five years in
the summer half year the ensemble mean shows an increase in discharge, though the variability
is very large for these values too and 3–4 ensemble members also show a decrease in summer
floods.
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Figure 4.30: Changes in return periods between the scenario and control periods at gauge Bad
Düben. Shaded areas indicate the min-max range of the ensemble.
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4.2.3 Ruhr

4.2.3.1 Calibration and validation

The original model calibration of the PRMS is the time period 1992–1993. The second hydrolog-
ical model in the Ruhr catchment, SWIM, uses the period 1991–1995 for the model calibration.
The common validation period refers to the time period 1971–2000 (control period). For that
purpose the meteorological input data in PRMS is configured with the most available measured
station data in the Ruhr basin. On this base of observed data, available for different stations
over different time periods, one common spatial dataset for the HRUs of the PRMS model is
applied [Höfer et al., 2010] and extended to the necessary control period 1971–2000. The input
data for the validation period of the HM SWIM is based on the DWD/PIK-Data as for the
Mulde catchment with methods for undercatch correction of precipitation errors (for details see
section 3.3.2.2.

Necessary observed data and reliable information about the complex water resources man-
agement systems (e.g. export and storage) in the Ruhr basin are not available for the complete
validation period. Consideration of these systems are therefore not reasonable in the HMs, and
for the further climate scenario simulations assumptions of the management systems in the Ruhr
are also not feasible. Of course all observed discharges at the gauge stations include all inter-

Ef fEf lnEf b [%]

all cal val all cal val all cal val all cal val

Bamenohl
PRMS 0.76 0.84 0.72 0.71 0.71 0.71 0.73 0.88 0.70 1 0 1
SWIM 0.83 0.86 0.83 0.94 0.95 0.94 0.59 0.69 0.57 -4 0 -4

Hagen-Ho- PRMS 0.74 0.80 0.73 0.90 0.92 0.89 0.69 0.74 0.73 10 7 14
henlimburg SWIM 0.69 0.74 0.68 0.92 0.93 0.92 0.48 0.55 0.45 7 9 7

Wetter
PRMS 0.73 0.82 0.71 0.91 0.91 0.91 0.69 0.82 0.67 22 15 24
SWIM 0.82 0.88 0.80 0.94 0.96 0.94 0.67 0.77 0.65 15 16 15

Table 4.11: Performance criteria for the three selected gauges (Bamenohl, Hagen-Hohenlimburg
and Wetter) and the two hydrological models (PRMS and SWIM), calculated for
the complete period 1971-2000 (’all’), and separately for the calibration (’cal’) and
validation (’val’) periods.
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Figure 4.31: MQ and MHQ of the validation simulations at gauge Wetter. The dashed lines
indicate the half-year mean values (colours as in legend).
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Figure 4.32: Return periods of the validation simulations at gauge Wetter.

ventions of the water resources management system in the Ruhr basin. Therefore, particularly
by the comparison of the model data with the observed data over the control time period, this
fact is to be taken into account.

The performance of the hydrological models PRMS and SWIM is exemplarily shown for the
three selected gauges Bamenohl, Hagen-Hohenlimburg and Wetter. The three gauges have long
observed time series of mostly good data quality. The observations at the gauge Bamenohl
started in 1972, Hagen-Hohenlimburg in 1977 and Wetter already in 1961.

The performance results are presented in detail in Table 4.11. Both models show good and
comparable performance for the control period. The mean Ef of PRMS is 0.84 and for SWIM
0.78. The SWIM model calibration focused more on the flood events, which can be seen in
the higher fEf of 0.93 (PRMS 0.73). The PRMS calibration sets more value on the complete
flow spectrum, what is visible in the lnEf of 0.84 (SWIM 0.52). The volume bias is low for
both HMs for the unaffected gauge Bamenohl. Due to the complex water resources management
systems, especially the water export, these results are not indicative for the other gauges (Hagen-
Hohenlimburg and Wetter).
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In fig. 4.31, the mean monthly discharge (MQ) and the mean maximum discharge (MHQ) are
shown for PRMS and SWIM at gauge Wetter. The annual regime of both hydrological models
(PRMS green and SWIM - blue) agrees well with the observed data (black) at the gauge. The
persistent overestimation, especially for PRMS in summer, is mainly due to neglecting the water
management in the models.

To evaluate the flood situation in more detail, the return periods of annual, winter and summer
maximum flows are shown in fig. 4.32. Both models show good agreement with observations for
the annual and winter time. The results of the summer period are again more strongly affected
by the water resources management system [Höfer et al., 2010], especially by the operation rules
regarding the filling level of the storages, and are therefore difficult to interpret.

4.2.3.2 Control period
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Figure 4.33: MQ of the control simulations at gauge Wetter. Dark shaded areas indicate the
maximum ensemble spread of the HM simulation shown in the plot, and the light
shaded areas the other HM.

Nov Jan Mar May Jul Sep

0
1

0
0

2
0

0
3

0
0

4
0

0

PRMS

M
H

Q
 (

m
³/

s
)

Wetter

Nov Jan Mar May Jul Sep

SWIM

WE5R1

CE5R1

CE5R2

CE5R3

CC3

SimObs

Ensemble Mean

Ensemble Range this HM

Full Ensemble Range

Figure 4.34: MHQ of the control simulations at gauge Wetter. Dark shaded areas indicate the
maximum ensemble spread of the HM simulation shown in the plot, and the light
shaded areas the other HM.
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For the climate change simulations, the hydrological models are driven by RCM simulated
meteorological data instead of observed meteorological data. Fig. 4.33 shows exemplary for the
gauge Wetter the results of hydrological simulations of MQ. The colours indicate the different
meteorological ensemble members (GCM – RCM), left and right marking the different HMs
(PRMS left and SWIM right). The black line shows the ensemble mean and grey shadings the
ensemble range. Fig. 4.34 shows the results for MHQ.

The ensemble mean of the two HMs follows in general the shape of the observed annual cycle.
Noticeable is the different behaviour in summer, although the meteorological model input is
the same and the hydrological calibration shows comparable results. This is related to different
pre-processing of the input data and different methods and approaches to describe the complex
water balance in the HMs. In particular, the concepts for the evapotranspiration differ and use
different meteorological input variables.

Fig. 4.35 shows the results for the return periods of the control period for HMs driven by RCM
simulated meteorological data, again for the gauge Wetter. In winter, the results are comparable
and the ensemble range is narrow. In summer, however, the ensemble spread increases due to
larger differences among the hydrological as well as the meteorological models.
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Figure 4.35: Return periods of the control simulations at gauge Wetter. Dark shaded areas
indicate the maximum ensemble spread of the HM simulation shown in the plot,
and the light shaded areas the other HM.
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4.2.3.3 Future period

The impact of a changing climate can be rated by the relative changes between future and control
simulation of the ensemble members. Therefore in fig. 4.36 the changes in MQ and in fig. 4.37
the changes in MHQ are presented. The ensemble spread is fairly wide, but a general increase
can be inferred for the ensemble mean for most of the year. The HMs show a comparable and
quite consistent picture. A clear spread due to natural variability of the climate, characterized
by the three realizations of GCM ECHAM5 (green, blue and light green), is visible. The two
GCMs ECAHM5 and CCCma3 (purple) show, at least for PRMS, also a different tendency, with
an increase in summer and a slight decrease in winter. Most noticeable are however the almost
opposite trends in the results for the two RCMs CLM (green) and WRF (orange) in summer.
Using the same GCM and realization input, WRF prognoses significantly higher flows compared
to CLM, which even projects slight decreases.
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Figure 4.36: Change in MQ between the scenario and control periods at gauge Wetter. Shaded
areas indicate one standard deviation of the ensemble.
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Figure 4.37: Change in MHQ between the scenario and control periods at gauge Wetter. Shaded
areas indicate one standard deviation of the ensemble.
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Fig. 4.38 shows the relative changes between the future and control scenario referring to the
return periods classified in annual, winter and summer maximum flows, again for the gauge
Wetter. At the annual scale, there is a quite consistent, albeit slight, increase. Extrapolation
and statements for longer return periods are not feasible with the data at hand. On the seasonal
scale, we see again that the ensemble spread is larger in summer than in winter.
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Figure 4.38: Changes in return periods between the scenario and control periods at gauge Wetter.
Shaded areas indicate the min-max range of the ensemble.
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4.2.4 Overall Results

This chapter discusses the results obtained with the ensemble formed from the combination
of GCMs, RCMs and HMs. For each catchment, we have ten ensemble members (five bias
corrected RCM simulations: CLM driven by CCCma3 and three realizations of ECHAM5 and
WRF driven by ECHAM5 realization one, each of which driving two HMs). In contrast to the
previous chapter, we here present the ensemble statistics, and compare the results from different
catchments to each other. Results for MQ, MHQ and return values are presented and the focus
is on changes between the future and control time periods. The ensemble is characterized in
terms of the ensemble mean (all members have equal weight) and the ensemble spread, described
by one standard deviation (SD) bounds around the mean.

Fig. 4.39 shows the ensemble mean annual cycle (left) and the changes (right) in MQ for
each of the catchments. Averaging over the ensemble has the effect of reducing the variability
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Figure 4.39: MQ for control period (left) and future changes (right) for Ammer (Weilheim),
Mulde (Bad Düben) and Ruhr (Wetter). Shaded areas indicate one standard devi-
ation of the ensemble.
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Figure 4.40: MHQ for control period (left) and future changes (right) for Ammer (Weilheim),
Mulde (Bad Düben) and Ruhr (Wetter). Shaded areas indicate one standard devi-
ation of the ensemble.

and a clearer pattern emerges. The climate change signal is uncertain, but shows some general
features that are of interest. In the Ammer catchment, there is a tendency towards an increase
in MQ in winter, and a decrease during summer. The Mulde and Ruhr catchments tend rather
to increases during the whole year. Comparing to the changes in precipitation, as presented in
section 4.1.5, one notices that the changes in MQ follow almost directly from this. Interestingly,
the variability of the ensemble is larger for the Mulde than for the Ammer, although the Mulde
catchment is several times larger and would therefore be expected to give a smoother result.

MHQ behaves in many ways similar to MQ, but with a larger variability of the climate change
signals, see fig. 4.40.

Concerning return values, fig. 4.41 shows the plotting positions of the return periods for winter
and summer half years. Again we see that the variability is larger for the Mulde catchment than
for the others during the summer half year. However, besides the large spread, the ensemble
result for the full ensemble as well as for each of the HMs separately show large agreement of
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4.2 Hydrological Model Results

increasing discharge for a given return period. This is also true for the Ruhr catchment for all
year. The Ammer catchment is a bit different in that the two HMs show larger disagreements on
the climate change signal. Especially in winter, the WaSiM model shows practically no changes
for the shorter return periods, while PRMS show strong increases in discharge.
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Figure 4.41: Changes in the return periods for winter (left) and summer (right) half years for
Ammer (Weilheim), Mulde (Bad Düben) and Ruhr (Wetter). Shaded areas indicate
one standard deviation of the ensemble.

4.2.4.1 Analysis of the sources of uncertainty

To assess the sources of the uncertainties in the end results (here the climate changes in MHQ
produced by the HMs is studied; the results are similar for MQ) the ensemble is divided into
four groups:

• GCM - This group consists of the two CLM simulations driven by different GCMs. How-
ever, as three realizations are available for the ECHAM5 GCM, there are three different
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possible combinations to use here, i.e. CCCma3 paired with each ECAHM5 realization.
The mean of all combinations was used for the assessment here.

• REA - This group consists of the different realizations of ECHAM5 as downscaled with
the CLM RCM.

• RCM - This group consists of the WRF and CLM simulations driven by ECHAM5-R1.

• HM - This group consists of the three HMs.

To get a decent statistical sample from the relatively small ensemble, the calculations are
performed over all catchments together.

Two standard statistical methods, namely ANOVA and Kruskal-Wallis, are used for testing
whether the different groups are statistically different in their MHQ changes. The ANOVA
method requires normally distributed data in each group, whereas the Kruskal-Wallis is non-
parametric (in the sense that it requires no parameter dependent distribution, however the
distributions for the different groups must still have the same kind of distribution). The distri-
bution were found to be approximately normal for each group in WH, and positively skewed in
SH. Furthermore, the different groups always produce similar distributions (not shown). This
means that both of the statistical tests are applicable to the data at hand.

p-stat. WH SH
ANOVA K-W ANOVA K-W

GCM 0.11 0.11 0.08 0.09
REA 0.00 0.00 0.19 0.22
RCM 0.37 0.08 0.00 0.00
HM 0.99 0.98 0.26 0.21

Table 4.12: The p-statistics for the ANOVA and Kruskal-Wallis tests applied to the ensemble
groups. Here, a low value indicates a more signficant difference between the tested
group and the others.

Table 4.12 shows the results of the two tests in the form of p-statistics. A value close to zero
means that the group differs significantly from to the others (the null hypothesis of no difference
between the tested group and the others can be rejected). Thus in winter, the main uncertainty
can be attributed to the natural variability, as simulated with the different realizations, followed
by the GCM used. The two statistics agree well on all groups, except for the RCM group which
according to Kruskal-Wallis ranks before and for ANOVA after the GCMs. The HMs cannot be
considered significantly different from the other groups, i.e. the uncertainty of the end result is
not much affected by the HMs. In summer, the RCM group is clearly different from the other
groups, followed by the GCM group, and on basically split third place the HM and REA groups.

To summarize, the tests have shown that the uncertainty in the future projections can be
attributed mainly to the GCMs and RCMs. The natural variability is a large source of uncer-
tainty for the near future, as it fluctuates at about the same amplitude as the climate change
signals. Both the GCM and RCM groups are especially undersampled in this study, but points
to important structural uncertainties in the model chain. Note, however, that one should be
careful in drawing too strong conclusions from this analysis as the samples for the different
group are generally very small. However, this uncertainty attribution is only valid for the cli-
mate change signal, which was our primary purpose. For the control as well as for the future
period discharges, there is a large contribution of the HMs to the ensemble spread.
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The aims of this project were i) to assess if and how the flood discharges for medium to small size
catchment areas in Germany will change in the near future (up to 2050), and ii) what uncertainty
is associated with such a statement. We studied three catchment areas, two of them medium
sized in low mountain ranges and a smaller one with more alpine characteristics; such catchments
react faster to heavy precipitation than large catchments. To reproduce precipitation in a
realistic manner (especially summertime convective precipitation), we used two non-hydrostatic
RCMs at high spatial resolution (7 km). To quantify the uncertainty of the climate change
signal, we used a ten member ensemble, in which the GCM-RCM-HM model chain was built
with different GCMs, RCMs and HMs. Although the ensemble used is considered small in
comparison to those used for weather prediction, it is one of the largest currently available RCM
based ensembles at such a high resolution.

Although the climate change signal is weaker and the 30-year periods make it difficult to
consider return periods longer than about 10–20 years, the near future period 2021–2050 was
deliberately chosen for its planning relevance and its relative independence from uncertain sce-
nario assumptions about future greenhouse gas emissions. Besides the more scientific result of
showing the feasibility and added value of this kind of study, the results for the return periods
considered here are of practical relevance to establish flood risk maps for planning and insurance
purposes.

According to the ensemble results, the flood discharges remain at the present day level for
the near future, or could even increase slightly, notably in the Ruhr catchment. However, single
members show a much more pronounced signal.

Increased sophistication and skill of the models (GCMs, RCMs and HMs) can reduce the
uncertainties, but only to a certain point; important processes are not sufficiently known, and
probably will remain so for the foreseeable future. Multi-model ensembles enable to take this
uncertainty into account, but it also requires the willingness and ability to deal with uncertain
information.

It must be pointed out that this work was a pilot study combining the investigations of medium
to small sized catchments with an ensemble of model chains including high resolution climate
models. The study showed the feasibility and — considering the wide range of single results —
also the necessity to perform this kind of work. It already indicates trends, but it could be put
on a more firm basis and extended in several respects. Some of these are discussed below.

The ensemble: Although the results presented here already give an indication of the future
prospects and are certainly much more informative and less error prone than results obtained
with only one single simulation, there is a need for a larger and more balanced ensemble. The
ensemble used is essentially an ensemble of opportunity, restricted by the availability of suitable
GCM data and the need to fit the computing time for quite expensive simulations into the
project time frame. The consequence is that the ensemble is quite small and biased towards a
specific GCM and RCM. A larger ensemble would provide a better basis for statistical analyses.
The majority of the ensemble members is based on ECHAM5 as a driving GCM and CLM as
RCM, so it would be important to have more GCMs and RCMs available. Although there are
indications that ensembles with about 20 members already capture the main variability, this
requires the ensemble to be well distributed. However, such information is not available a priori
and can only be ascertained through a larger ensemble size. For GCMs, it can be expected
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that more datasets suitable for downscaling will be available in the future; for RCMs, apart
from CLM and WRF, not many non-hydrostatic models required for the resolution used (high
resolution seems to be a necessary, but not sufficient condition for realistic results at catchment
scale) are available. This might be alleviated by using different setups and parameterizations
in the available models. It will also be necessary to reduce the biases of the models. A large
remaining problem is the required computing time, which considerably reduces the affordable
ensemble size. Thus, the main goals should be to derive reliable information from small and
possibly biased ensembles, to improve GCMs and RCMs, and to learn to deal with the remaining
uncertainty.

Consequences for flood risk: The discharge at gauges varies considerably among the
different ensemble members. However, discharge gives no direct information on the size of
flooding areas, which is the relevant information in hazard assessments. Obtaining flood risk
information requires the discharge information to be fed into hydraulic models, a step which
was not included in the present project, but could be carried out with the available data.

Thus, the CEDIM-project ”Flood Hazards in a Changing Climate” has shown that there are
still large scientific challenges ahead, but at the same time it could already provide valuable
information for e.g. water management purposes about trends for the near future, including
- very importantly - uncertainty margins. The data produced in the project can be used for
further studies, and the methods be applied to other catchments.
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Abbreviations

AET Actual evapotranspiration
b Volume bias
CCCma3 Canadian Center for Climate Modelling and Analysis model version 3
CLM Climate version of the COSMO (Consortium for Small-scale Modeling) model
DEM Digital Elevation Model
DWD Deutscher WetterDienst
NSE Nash-Sutcliffe efficiency
ECHAM5 GCM model of MPI-M in Hamburg
E-OBS Gridded observational data set of precipitation and temperature
fEff Modified Nash-Sutcliffe coefficient
GCM Global Climate Model (also General Circulation Model)
HE Histogram Equalization
HM Hydrological Model
HRU Hydrological Response Unit
LAI Leaf area index
MQ Mean monthly discharge
MHQ Mean monthly maximum discharge
PIK Potsdam Institut für Klimafolgenforschung
PIK/DWD Station data set for Germany
PET Potential evapotranspiration
PRMS Precipitation Runoff Modeling System
RCM Regional Climate Model
R1–3 Marks the different realizations of the ECHAM5 GCM
SH Summer Half-year
SWIM Soil and Water Intergrated Model
WaSiM Water balance Simulation Model
WH Winter Half-year
WRF Weather Research and Forecasting model
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S. Trömel and C.-D. Schönwiese. Probability change of extreme precipitation observed from
1901 to 2000 in Germany. Theor. Appl. Climatol., 87:29–39, 2007.

N. Veijalainen, E. Lotsari, Petteri Alhob, and Jukka Käyhköb Bertel Vehviläinena. National
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